高功率以太网供电不再困难
图3:转换器输出端串联配置
图 4 是可提供 5.0VDC 电压、 7A 电流的同步降压转换器。在该输出范围内,这是一种典型的降压转换器。所使用的 MOSFETs 具有和有源钳位同步整流器类似的要求,因此使用相同的MOSFET。通过电感周围的 DCR 检测电路提供电流检测。电流检测电阻只会造成能量的浪费,并且成本也是相当昂贵。
图4:同步降压转换器
DCR 电流检测受制于绕线电感中铜线的温度系数。 R49 和 RT1 提供温度补偿, RT1 应尽可能靠近电感的输出端放置,而 PCB 版图的设计应尽量将热敏电阻和电感线圈保持在相同的温度。在有源钳位级电路中也使用相同的电感。由于稳定的 Vcc 可通过 R41 来决定系统工作频率,因此为保持 Vcc 的稳定,需要从 12V 稳压器引入偏置电压。内部稳压器很容易在7.5V或以下电压工作,然后二极管与来自5V输出的小型电压倍增器进行并联。偏置电压 Vbias 应是 8.0V 到 15.0VDC 。
图5是一个可提供 12.0VDC 电压、 1A 电流的非同步升压转换器。它是一个很普通的设计,但有一点值得一提。如果将升压转换器的输出端短路,则它不能阻止短路作用到输入电压,因为没有在线开关阻止它。如图所示,有时用一个可快速起作用的保险丝阻止任何意外的发生倒是个挺不错的主意。
图5:非同步升压转换器
最终结果不仅提供优良的性能和性价比,而且能提供任意数量的不同输出电压。经测试,图示的设计在 37VDC 电压输入下的效率为 87.6% ;在低线路输入条件下,该设计可提供约 47W 的稳压输出。这个 87.6% 是从以太网连接器到稳压输出端。不管是否使用了两个串联转换级电路,实际功率级电路提供的效率正好在 90% 以下。由于缺少隔离式反馈,因此也可轻松的定制该设计,而不必担心隔离反馈环路的稳定性补偿问题。降压和升压后端稳压器的补偿通常很容易实现。
该特例采用了一个 7.5V 的中间总线。在某些情况下可能更适合使用较低的总线电压;在本例中,为了实现最佳效率,输出端的串行连接将迫使单个供电电压降到很低。如果那样的话最好是将两个功率级电路并联起来,这个方法要求在电源轨之间采用某种形式的有效功率共享。当然,限制设计将两个供电单元并联使用是毫无道理的。事实上,对可用于供电的以太网网线的数量没有任何理论限制。并行配置的一个优点是:可提供内置冗余,如果一根线断开了仍然具有较低的供电能力。该电路已开发出来,但在此不作赘述。
- 兼容标准的高功率PoE系统设计(11-19)
- 以太网供电技术特征及应用于转换器的设计(07-15)
- EoPDH转换器的优势与应用 (01-19)
- 十种类型现场总线的体系结构综述(04-27)
- 以太网的远程控制信号调理系统(08-13)
- 基于以太网的电力调度信息传输的开发(05-01)