基于RAV-4的电动汽车电池组风冷系统的研究
一、引言
电池作为电动汽车中的主要储能元件,是电动汽车的关键部件,直接影响到电动汽车的性能。
电池组热管理系统作为电池管理系统中不可或缺的部分,它的研究与开发是现代电动汽车中关键的一环,也是提高整车性能的重要方面。首先,如果电动汽车电池组长时间工作在比较恶劣的热环境中,就会降低电池性能。其次,电池箱内温度场的长久不均匀分布将造成各电池模块、单体性能的不均衡。这些都将会缩短电池使用寿命。通过电池包的建模仿真可以看出风冷系统中气体流动情况,多点温度测量实时监控电池包内温度易于找出损坏电池,及时替换,从而提高整个电池组的寿命。
二、电池最优工作温度范围的确定
在不同的气候条件、不同的车辆运行条件下,电池组热管理系统要确保电池组在安全的温度范围内运行,并且尽量将电池组的工作温度保持在最优的工作温度范围之内。
目前电动汽车用电池主要有铅酸电池、镍氢电池和锂离子电池。镍氢电池作为比能量较高且使用无污染的新型电池在电动汽车和混合电动汽车中应用越来越普遍,本文即以丰田RAV-4电动汽车用镍氢蓄电池为例对电动汽车电池组热管理系统进行分析。
镍氢电池的特性对其热管理系统的影响很大。电池内部的电化学反应很复杂,存在感应和共生的非感应的过程。不同的电池反应不同,因而有不同的充放电热特性。镍氢电池由镍氢化合物正电极、储氢合金负电极以及碱性电解液组成。在充放电过程中,氢镍电池电化学反应表示如下:
氢镍电池的生热因素主要有4项:电池化学反应生热、电池极化生热、过充电副反应生热、内阻焦耳热。
电池充电过程中的反应生热可以分为两个阶段:在没有发生过充电副反应之前为第1阶段,发生过充电副反应之后为第2阶段。
第1阶段,生热量主要来自:电池化学反应生热、电池极化生热、内阻焦耳热。生热量可用下式计算:
第2阶段,生热量主要来自:电池化学反应生热、电池极化生热、过充电副反应生热、内阻焦耳热。其中大部分的生热量来自于过充电副反应生热。充电末期和过充电时,过充电副反应就开始发生,其生热量:
电池放电过程中的生热量主要来自:电池化学反应生热、电池极化生热、内阻焦耳热。需要指出的是氢镍电池放电时化学反应是吸热反应,能吸收一部分热量,所以生热问题不是很严重,生热量如下:
式中Rt--电池内阻和极化内阻的和
Ic--电池的充电电流
Id--电池的放电电流
由于阴极反应的热应力不同,充电过程的后期(不平稳段)比放电过程的后期放出的热量大得多。
图1是清华大学汽车安全与节能国家重点实验室做的某80Ah氢镍电池不同温度下电池放电效率实验。
当温度超过50℃时,电池充电效率和电池寿命都会大大衰减,在低温状态下,电池的放电能力也比正常温度小得多。图1所示在温度高于40℃或者温度低于0℃时,电池的放电效率显著降低。从这一点可以推测,镍氢电池的理想工作温度应该在0~40℃之间。
三、RAV-4电动汽 车中电池组冷却方式
按照传热介质分类,热管理系统中对电池的冷却方式可分为气冷、液冷及相变材料冷却3种。RAV-4电动汽车中电池的冷却是气冷。
目前空冷散热通风方式一般有串行和并行两种,如图2所示:
某一工况下,选择不同通风方式时电池组的温度场分布比较见图3。其中,图3a表明从外侧到中央温度从35~140℃递增;图3b表明从左侧到右侧温度从40~60℃递增;图3c表明温度均为45℃左右。
由图3可知,采用并行通风方式是最有效的。这种方法的最大优势是每个模块都可以吹到等量的冷空气,保证了模块间温度的一致性。这样,电池组的温度就可以用几个特定位置的模块温度来表示。
四、RAV-4电动汽车电池组冷却方式的研究
由于本文中气流速度比较低,所以电池包中不同点的气体流量气流速度基本能够说明那里冷却效果的好坏。
(一)RAV-4电动汽车电池组结构分析
丰田的RAV-4电动汽车电池组采用的是风冷方式。它具有特殊的结构设计,电池包中放置24块镍氢电池模块,电池包由底座和上盖组成,整体材料主要是纤维复合材料,厚度3mm,通过高压冲压成型,具有良好的机械强度,排气系统中的排气孔均匀地分布于电池箱的底部,设计上充分考虑到汽车前进时在电池箱底部形成的负压区,对箱内气体起引射作用。
电池包中尾端装有二台风机,可对电池进行强制性吹风冷却,送风管道由电池包的上盖结构形成,风机送出的风可到达24块电池模块的上端。
电池模块的特殊结构:电池模块是由10只单体镍氢电池组成,在单体电池的侧面,留有通风冷却通道,每面有7条。由10只单体电池组成的电池模块就有9条通风通道,这些通道能够对电池工作过程中进行通风冷却作用。
电池包底座安装24块电池模块,在每块电池下面开有2个通风孔,直径为30mm,总共有48个通风孔。通风孔入口处设置有通风导流板,导流板让气流流动朝着一个方向。
- 串连蓄电池组的均充技术研究 (11-30)
- 电动汽车电池管理系统的多路电压采集电路设计(11-30)
- 精确计算电池剩余电量至关重要(01-09)
- 针对便携式工业测量应用延长电池寿命的诀窍(01-10)
- 在多节电池组应用中使用DS2755电池电量计(01-16)
- 什么是光伏效应?(01-19)