基于DC/DC软开关技术的充电机在铁路辅助电源系统中的应用
0 引言
SPWM(Sinusoidal PWM)控制技术是逆变器研究和应用领域的核心技术之一,在早期的SPWM实现方法中,最典型的是由一个模拟比较器对一个三角载波和一个正弦调制信号进行比较,实现正弦调制信号对三角载波的调制。这种将三角载波和正弦调制波进行实时比较实现调制的方法叫作自然采样法。显然,自然采样法适合于用模拟比较电路来实现。模拟电路实现简单、响应速度快,但是存在着参数漂移大、集成度低和设计不灵活等同有而又难以克服的缺点。
上世纪80年代以来,随着计算机技术的快速发展,基于微控制器的运用方案得到了迅速的发展,运用单片机、DSP等器件实现SPWM成为主流,最常用的是各种形式的规则采样法,但是在某些特殊的场合:如在高频大功率、低失真逆变电源中,常用的规则采样法无法满足要求。
因此,如何改进SPWM算法以提高逆变电源的各项指标成为值得长期深入研究的课题之一。随着微电子技术的飞速发展,特别是FPGA的集成度的大大提高(芯片内部提供大量的硬件乘法器),使得复杂算法在系统中得到简单快速的解决。文献提出了一种改进的面积等效算法,进行了谐波仿真分析。文献论述了用DSP与FPGA相结合来实现基于规则采样法的多路SPWM波形发生器。文献提出了数字化自然采样法,并用FPGA实现SPWM波形。
本文提出了规则采样线性外推的准自然采样SPWM方法(以下简称线性外推法),该方法利用模数转换器(ADC)对正弦调制波有规律地在每个三角载波周期内波峰和波谷采样,将得到的相邻的两个采样点连线并延长外推,此直线必然与三角载波相交,得出求解SPWM开关点的通式。该方法近似替代了自然采样法,使用FPGA的硬件乘法器可快速地实现开关点通式的计算,进一步求出脉冲的宽度、间隔时间及单个载波周期内的SPWM波形的基本算法。本文主要阐述了线性外推法的基本算法及该方法与自然采样法、规则采样法的比较。结果表明:线性外推法改进了规则采样法,达到了逼近自然采样法的调制效果,谐波分析效果明显
l 线性外推法
l.1 基本思想
三角载波与正弦调制波如图l所示。a、b为规则采样法的开关点,SPWM1为其对应的SPWM波形;c、d为自然采样法的开关点,SPWM2为其对应的SPWM波形。
线性外推法的基本原理是:在每一个三角载波的波峰和波谷处分别采样,然后将相邻两个采样点连线并延长,则延长线必定与三角载波相交于一点,由此点作为开关点决定SPWM波形。图l假设任意的第K个采样点为波峰采样,记为Sk,则住其前后的两个采样点都为波谷采样,分别记为Sk-1和Sk+1。Sk-1与Sk+1的线性外推的交点为e,Sk与Sk+1的线性外推的交点为f,SPWM3为其对应的SPWM波形。
从以上三种方法实现的SPWM波形可以看出,采用线性外推方法求得的开关点比规则采样法更接近自然采样法的开关点。
1.2 开关点求解
本文介绍在双极型调制时,线性外推法开关点的求解方法。
图2是任意单个开关周期开关点示意图,图2中T为载波周期,Sk-1、Sk、Sk+1为相邻三个采样点,a、b为开关点。线性外推法决定的SPWM开关点有如下规律:当前波峰处采样点与其前一个波谷处采样点线性外推,得到的开关点决定开关器件的导通时刻,此时SPWM的脉冲输出高电平;当前波谷处采样点与其前一个波峰处采样点线性外推,得到的开关点决定开关器件的关断时刻,此时SPWM的脉冲输出低电平。
由图2可知,开关点应为
其导通时间为
为载波周期。根据其周期性的特点,其开关点的通式为
下文推导t1、t2(均大于零)的求解公式。
设三角载波的正、负峰值为B和一B值,载波周期为T,则双极式三角载波斜率可表示为
本文研究的是双极型调制时的线性外推法,在建立坐标系时,正弦调制波和三角载波同时向上平移B。图3是求解开关时刻的数学模型示意图。分别建立如下坐标系,此时求解开关点时.三角载波方程可以在所属的坐标系中进行简化。
由t1和t2的值和开关点的通式就可以得到整个SPWM波形
2 仿真研究
2.l 波形仿真
在双极型条件下,使用自编的Matlab函数y1=xinsuanfa(Ur,B,sf1,mm,cf)进行仿真研究。其中,Ur为正弦调制波的单峰值,B为三角载波的峰值,sf1为调制波的频率,mm是一个和计算THD相关的整数系数,它表示计算THD时,最高次谐波计算到第mm次载波及其边带,cf为三角载波的频率。图4是调制度为0.8,载波比为5的仿真结果。图4中的上半部分是正弦调制波与三角载波,可以看出SPWM调制的载波比与调制度。下半部分为三种调制方法实现的三个SPWM波形,依次是①对应规则采样法、②对应自然采样法、③对应线性外推法。
线性外推法的特点是由当前最后两个采样点
- 基于DSP的SPWM变频电源数字控制(02-25)
- 基于DSP的三相SPWM变频电源的设计(03-15)
- 一种电压-电压SPWM控制DC/AC电路的设计(05-29)
- 一种高性能逆变电源的实现(06-11)
- 基于高性能AD变换器和DSP的电源设计(10-22)
- 一种单极倍频电压型SPWM软开关DC/AC逆变器的设计(03-17)