数字技术中的模拟电路技术
由于数字电路是利用上升沿/下降沿很短的脉冲信号,所以会向外部放出包括高频成分的多余电磁波(噪声),而且对外部来的电磁波(噪声)敏感地响应,造成误动作。另外在电路内部也存在线间产生交调失真、数字器件的通/断时电流急骤变化引起电源电压变动等问题。这样就需要在数字电路中考虑布线的电感和寄生电容构成的分布常数电路、防止上冲、下冲造成波形的混乱及信号反射、延迟、衰减、线间电磁干扰的交调失真。而解决这问题的滤波器、屏蔽等都是模拟技术。
由于数字电路技术在汽车、火车、收音机控制中的应用,高可靠性地实现了以前用模拟技术无法实现的高功能。但是由于噪声会引起系统及电路误动作,尤其对机器为系统是致命的问题。而模拟电路即使有噪声,也只是暂时降低数据的精度,一旦噪声消失,就具有自我恢复功能的特征。因此将实现高功能的数字电路和具有自我恢复/自我确认能力的模拟电路组合应用,对防止移动控制系统、数字电路噪声引起的误动作将会是一种安全的方案。
电路设计时要特别注意的地方
在电路设计后,为了进行工作验证,需要组装电路进行实验。但是结果会经常出现不按设计那样工作。例如设计的放大器却变成了振荡器,在模拟电路中由于混入数字电路来的噪声,使模拟信号的波形失真、工作不稳定、不能顺利得到数据。
对低频电路来说,无论谁组装,只要布线不接错,各种不同的安装、布线、电路特性几乎没有差异,可得到相同的数据。但是高频却不同了,由于安装方法不同,一般会得到不同特性的数据。
在高频电路及高速数字电路中,如果有一条线就会形成电感成分(寄生),如果有两条线则在线间就会形成寄生电容成分及互感成分(寄生),即所谓三寄生。所形成的三寄生数值是很微小的,因此在低频时几乎不成问题,但是在高频领域却不能忽略该C、L成分的影响。
最近为了提高机器的性能,经常将从低频到高频的模拟电路、高速数字电路、微型模拟电路及大电流电路等各种电路混在一起,这样会造成电路的不稳定及频率特性恶化。其中主要原因就是在设计时未充分考虑上述三寄生,而无法维持可靠性和安全性。
另外,电路图中只用二维表现半导体器件及R、C、L的集中参数,但这并不能代表实际电路的性能和功能。实际的动作是三维空间,包括频率就是四维空间了。因此,由交调失真、反射、静电、电磁结合形成的微电流电路在高频电路中会对特性、功能造成影响。最近的IC想根据时代的要求,很多是高速动作的器件,对高频噪声的响应很敏感。因此在使用器件时要根据电路功能选择相应的元器件,尽量避免使用高于要求的高速IC。
在电路图中通常将电源、地线、信号线的阻抗均按零欧姆考虑的。但是实际上是不存在零欧姆的,而且频率越高,电感和寄生电容的影响越大。结果,电路相互结合及外部电磁场的影响大到不能忽略的程度,造成电路不稳定及频率特性恶化。在模拟电路中应解决误差、噪声及时间延迟问题;而数字电路中解决抗噪声,通过同步使之不受时间延迟的影响,对改善电路特性是非常重要的。
必须注意动态噪声"静电"的影响
能引起电气设备误动作的噪声源很多,例如我们周围的日光灯、除尘器、无线电收发信机、变压器、变换器等。这些都是属于电磁场噪声源。除此之外,引起误动作的噪声源是静电放电。
由于静电放电电流和瞬间产生的高电压会使IC破坏,从而使系统或设备造成误动作和故障。为了防止静电放电,从元器件的购买到设备的设计、生产和包装都要采取必要的措施。在设计方面可以采取以下措施:
(1)避免使用超出要求的高速IC、特别是注意输入电路。在可能的情况下输入电路采用差分方式。滤波电路要紧靠IC连接。
(2)对半导体进行输入保护。在连接器的输入部分为了使噪声控制在半导体耐压值以下而加入限幅电路。由于CMOS栅极抗静电噪声性能弱,所以不易用于连接器的输入部分。
(3)避免使用边沿解发型IC,而使用选通方式或带门闩的电路。
(4)为了抑制误动作的发生率,在控制端、输出端应做成低有效逻辑。
(5)对高灵敏度的信号输入要进行滤波。将频带外的高频滤除,这对运算放大器不输入过大的信号是很重要的。还要注意所用电容器的引线电感。
(6)在软件方面也要采取了一些措施。由于静电放电是一次性过渡脉冲,所以可通过多次校验检出错误数据。在微机中为了防止意外停止而设置看门狗电路(监视电路)。
(7)电子电路及布线要远离放静电的金属机箱。
(8)机箱的金属和金属连接部分要除去涂料紧密相接,尽可能加螺钉固定。