MicroTCA功率互连设计经验之谈
在电信和商业行业迅速发展的MicroTCA架构可能成为电信产业的电子设计的转折点。以前,许多电信设计都是高度定制的,并且受所有权的保护。相比之下,MicroTCA中的互连应用是标准化的,这可能是类似于计算机产业中普及的开放式架构兴起的一个信号。
虽然标准化连接器设计可能看起来很基础,但是从MicroTCA功率连接器提案中获得的经验与电源和其它行业以及商业电力电子系统的设计工程师相关。MicroTCA连接器要求高功率密度、热插拔能力、高可靠性和低成本。在通过接触件和机架设计满足这些要求时所采取的设计过程为如何实现其它应用中的连接器设计提供了模板。
MicroTCA的发源历程
PICMG组织最初开发了MicroTCA标准以满足电信产业的要求。但是,在发展过程中,这个标准受到军事、航空、工业、工艺控制和媒体产业的关注。这个标准的引人之处在于它能够在使用最新处理器、高速芯片和接口的同时最大限度地缩小空间和降低功耗,以提供高可用性和可维护性。由于这是一个工业标准,因此客户能够利用现成的解决方案以较低的成本和较短的上市时间构建他们的价值主张。
MicroTCA功率互连应用基本上是以电源模块和背板配置开始的,最后加入Advanced Mezzanine Card (AdvancedMC)以及如今被设计到市场中的背板排列。这个方法是较大的先进电信计算架构(ATCA)的一个分支。
这种应用或多或少被列为板到板连接器功率应用。最终的设计是一个两片的板到板功率连接器,这种连接器旨在满足电信、航空、医学等领域的高可靠性要求。新连接器的一些特定要求包括特有的成本和经济问题,但是互连还必须满足63.5mm内24个具备热插拔能力的12A功率接触件和72个信号接触件的密度要求。
MicroTCA标准提议采用针对ATCA子卡的现行标准AdvancedMC作为其自己的紧凑型背板和机架上的主要刀片(或板)(图1)。该标准需要开发电源输入模块(电源)来向背板提供电源,并附带必要的控制线路从而在刀片和电源之间传递状态信息。标准组织针对能够满足功率和接触件密度的集成功率和信号连接器对业内进行了调查,并确定不存在解决方案。
在为背板提供更多功率的传统应用中,增加了功率连接器的长度以增加更多接触件。图2是传统功率和信号连接器(前景)与MicroTCA PCB板(约74mm)的对比图。很明显,这种连接器不适合该应用。
图2中的功率连接器显示了提供所需的MicroTCA功率接触件必需的尺寸,但是它仅有24个信号接触件,而MicroTCA需要72个信号接触件。这表明,传统连接器不具备满足MicroTCA的尺寸和功率/信号密度要求的能力。
在MicroTCA应用中,功率/信号连接器的长度必须在63.5mm左右,以适合这种空间。MicroTC最初的功率密度要求是具备1000W以上的能力,在不同的电压和电流水平下提供32个离散功率输出,同时附带上文提到的控制/状态线路。这种连接器的额外要求是高可靠性(电信领域的必备条件)、热插拔和低成本。
由于要求未完全连贯以及现有功率互连的最初评估,行业组织决定有必要开发新的功率互连设计。在制定设计目标时,确定了新的连接器应具备以下要求:
* 采用业内接受的有可靠性指标的接触件技术
* 采用低成本制造工艺和材料
* 遵循所有现有和预期的全球环境要求,比如RoHS
* 与客户的各种制造工艺兼容(焊接和压接)
连接器概述
MicroTCA中采用的功率连接器是一个双片连接器,旨在使MicroTCA电源子卡(直角连接器)与背板(垂直连接器)互连(图3)。这个连接器整合了24个功率接触件,分两行排列的每个接触件都能够处理14.5A的电流。有72个信号引脚用于低电流电源以及功率模块和线卡之间的状态通信。此外,连接器机架还集成了对齐功能以确保功率或信号接触件接合之前保持适当的排列。
功率、信号和对齐杆功能的完全集成解决方案已经被构建在单片机架中,直角插头仅占据60×19mm2左右的PCB空间,垂直插座仅占据61.1×27.2mm2的PCB空间。额外要求是提供四个连接器顺序对接级别。
冲压和成形的功率接触件基于整个电信产业采用的工业可识别通用功率模块(UPM)接触件。采用这种刀片和插座设计,接触件对接点可以得到很好地限定和控制。连接器具备14.5A以上的极高电流密度以及30°C的温升(参见图4和表)。它还通过采用多个顺畅的尾部使每个接触件通过PCB的电流高达14.5A(因此通过孔的电流不到4A),从而具备流畅的电流分布。
为了满足高压对接和拔出要求,接触件设计采用延长的末端刀片设计。因此在高压对接和拔出周期,电