用ASSP优化便携式设备的电源管理
去年,消费者购买了十亿多部手机,2.2亿台笔记本电脑,1.4亿只MP3,9千万数码相机(DSC)以及1千万套个人导航设备(PND)。依据内部系统架构来说,所有的这些设备都有一定的共性。首先,它们都是由电池供电的,通常都是利用某种锂离子电池(Li-Ion)作为主电源,而利用另一个输入电源作为备份或者为了充电。其次,它们都内置了一定的存储设备,通常包括某种ROM、RAM或NAND闪存,而在许多时候还有一个硬盘(HDD)或SDIO卡。根据技术调查机构IDC的最新研究,去年全世界共生产了1610亿GB的数字信息。这相当于需要用20亿台iPod来存储这些信息。
但是,上面没有提及的另一类产品,就是将上述产品功能中的两种甚至三种组合到一起的产品,如便携式媒体播放器(PMP)或数字媒体广播(DMB)产品。这些产品也利用锂离子电池作为主电源,并具有很大的存储容量。它们正在成为消费电子领域中的重要播放设备。
PMP或DMB产品的一个关键优点是他们都能播放MP3和MP4格式。因此,利用一台设备就可以欣赏来自DVD-CD或者从网站上下载的音乐和电影。典型地,设备的存储媒质可以存储超过150小时的视频或者1200小时的音乐。但是,和其他任何依赖电池供电的手持设备相类似,这些PMP设备的制造商面临前所未有的压力,他们必须将诸多的功能集成到体积和外形受限的结构里,同时还要提供更长的工作时间。
由于绝大多数PMP都具备视频播放和MP3播放的功能,内部电路要求多个功率电平不等的低电压轨。其原因是很清楚的,因为大多数数字大规模集成电路的工作电压为1.5V或更低。同时,存储器和I/O所需电压为2.5~3.3V。于是,采用多负载点(POL)DC/DC变换器对来自锂离子电池的电压进行直接变换是不现实的,系统设计师必须采用更多的集成方案。
绝大多数电池供电的手持设备都利用一块定制集成电路(ASIC)来处理电池充电、功率通道控制、提供多路电源电压,以及保护功能(例如实际的输出开路和精密的USB电流限制)等。采用这种方案的目的很明确,就是可以用一枚器件来满足所有的电源管理方面的需求。不过,这种方案也存在一些缺点。首先,ASIC是采用特定的晶圆制造工艺来制造的,要实现每个功能的最佳性能非常困难。其次,对于短动态设计周期的设计变得更为重要的是ASIC的定义和研发所导致的交货周期过长。一般来说,一块电源管理ASIC从概念到交货需要的时间在一年半以上。而在此周期内,一种特定的产品设计可能已经更改了三次或更多。
用于电源管理的应用定制标准产品
绝大多数的电池供电的手持设备通常可以用一个AC适配器,一个通用串行总线(USB),或者一块锂/聚合物电池来供电,但是,如何实现这些电源间的电源通道控制是一个很大的技术挑战。直到最近,设计师还在试图利用分离的方式,即用一组MOSFET以及运算放大器等来实现这一功能,但他们面临着很大的问题,如热插拔和很大的瞬间电流等,这些都会引起很大的系统问题。
在各类电池供电的手持设备中的功能和性能方面存在一定的共性,这些产品中可以使用应用定制标准产品(ASSP),且没有在单晶圆制造工艺中出现的与IC制造相关的性能折衷。Linear公司最近开发出了新一代的这类产品-LTC3555,该产品代表着这类应用中的性能和功能上的一个新水平。
LTC3555无缝地管理交流适配器,USB和锂离子电池之间的功率流,符合USB标准,所有部分均封装在一个4×5mm QFN内。似乎这还不足够,它还带有一个全功能的锂离子/聚合物电池充电器,能够提供高达1.2A的充电电流,再加上三个用来产生绝大多数USB外设所需的低电压轨的高效率同步降压转换器。此外,LTC3555还提供一个恒定的25mA的低压差线性调节器来为实时时钟(RTC)和低功率逻辑电路供电。整个器件可以通过一个简单的I2C接口或简单的I/O口来控制。
图1:LTC3555的简化方框图和原理图。
LTC3555的应用电路图如图1所示,图中显示了多功能的实现原理。DC/DC变换是一个相对简单的降压变换。LTC3555的三个片上降压变换器都工作在电流模式控制,效率高达95%,具有I2C或芯选触发突发模式或自动的触发突发模式。DC/DC变换器的开关频率为2.25MHz,允许使用很小的外部电容和电感。这些降压变换器的连续输出电流分别为1A,400mA和400mA,输出电压在0.8-3.6V之间可编程。
LTC3555的功率提供方法与现有的电池和电源管理IC不同,实际上是电荷馈送(charger-fed)系统。在一般的电源管理IC中,外部电源并不直接为负载供电。而是由AC适配器或USB口为电池充电,然后再为负载供电。在电池被过度放电或根本就没有任何电量的情况下,为负载供电会有一个延迟。这是
- 用简化方法对高可用性系统中的电源进行数字化管理(10-02)
- 具有可调温度限制和可编程滞后电压的低成本散热保护电路(03-05)
- 照明用LED驱动器解决方案(04-21)
- 双相可转换升/降压电源电路(05-08)
- 可对储能器件进行安全且快速充电的通用型电流源(03-13)
- 宽输入电压范围降/升压转换器简化可变输入电源的设计(06-19)