什么是ADC(模数转换器)
取样和保持
取样是将随时间连续变化的模拟量转换为时间离散的模拟量。取样过程示意图如图11.8.1所示。图(a)为取样电路结构,其中,传输门受取样信号S(t)控制,在S(t)的脉宽τ期间,传输门导通,输出信号vO(t)为输入信号v1,而在(Ts-τ)期间,传输门关闭,输出信号vO(t)=0。电路中各信号波形如图(b)所示。
图11.8.1 取样电路结构(a)
图11.8.1 取样电路中的信号波形(b)
通过分析可以看到,取样信号S(t)的频率愈高,所取得信号经低通滤波器后愈能真实地复现输入信号。但带来的问题是数据量增大,为保证有合适的取样频率,它必须满足取样定理。
取样定理:设取样信号S(t)的频率为fs,输入模拟信号v1(t)的最高频率分量的频率为fimax,则fs与fimax必须满足下面的关系fs≥2fimax,工程上一般取fs>(3~5)fimax。
将取样电路每次取得的模拟信号转换为数字信号都需要一定时间,为了给后续的量化编码过程提供一个稳定值,每次取得的模拟信号必须通过保持电路保持一段时间。
取样与保持过程往往是通过取样-保持电路同时完成的。取样-保持电路的原理图及输出波形如图11.8.2所示。
图11.8.2 取样-保持电路原理图
图11.8.2 取样-保持电路波形图
电路由输入放大器A1、输出放大器A2、保持电容CH和开关驱动电路组成。电路中要求A1具有很高的输入阻抗,以减少对输入信号源的影响。为使保持阶段CH上所存电荷不易泄放,A2也应具有较高输入阻抗,A2还应具有低的输出阻抗,这样可以提高电路的带负载能力。一般还要求电路中AV1·AV2=1。
现结合图11.8.2来分析取样-保持电路的工作原理。在t=t0时,开关S闭合,电容被迅速充电,由于AV1·AV2=1,因此v0=vI,在t0~t1时间间隔内是取样阶段。在t=t1时刻S断开。若A2的输入阻抗为无穷大、S为理想开关,这样可认为电容CH没有放电回路,其两端电压保持为v0不变,图11.8.2(b)中t1到t2的平坦段,就是保持阶段。
取样-保持电路以由多种型号的单片集成电路产品。如双极型工艺的有AD585、AD684;混合型工艺的有AD1154、SHC76等。
量化与编码
数字信号不仅在时间上是离散的,而且在幅值上也是不连续的。任何一个数字量的大小只能是某个规定的最小数量单位的整数倍。为将模拟信号转换为数字量,在A/D转换过程中,还必须将取样-保持电路的输出电压,按某种近似方式归化到相应的离散电平上,这一转化过程称为数值量化,简称量化。量化后的数值最后还需通过编码过程用一个代码表示出来。经编码后得到的代码就是A/D转换器输出的数字量。
量化过程中所取最小数量单位称为量化单位,用△表示。它是数字信号最低位为1时所对应的模拟量,即1LSB。
在量化过程中,由于取样电压不一定能被△整除,所以量化前后不可避免地存在误差,此误差称之为量化误差,用ε表示。量化误差属原理误差,它是无法消除的。A/D 转换器的位数越多,各离散电平之间的差值越小,量化误差越小。
量化过程常采用两种近似量化方式:只舍不入量化方式和四舍五入的量化方式。
1.只舍不入量化方式
以3位A/D转换器为例,设输入信号v1的变化范围为0~8V,采用只舍不入量化方式时,取△=1V,量化中不足量化单位部分舍弃,如数值在0~1V之间的模拟电压都当作0△,用二进制数000表示,而数值在1~2V之间的模拟电压都当作1△,用二进制数001表示……这种量化方式的最大误差为△。
2.四舍五入量化方式
如采用四舍五入量化方式,则取量化单位△=8V/15,量化过程将不足半个量化单位部分舍弃,对于等于或大于半个量化单位部分按一个量化单位处理。它将数值在0~8V/15之间的模拟电压都当作0△对待,用二进制000表示,而数值在8V/15~24V/15之间的模拟电压均当作1△,用二进制数001表示等。
3.比较
采用前一种只舍不入量化方式最大量化误差│εmax│=1LSB,而采用后一种有舍有入量化方式│εmax│=1LSB/2,后者量化误差比前者小,故为多数A/D转换器所采用。
A/D转换器的种类很多,按其工作原理不同分为直接A/D转换器和间接A/D转换器两类。直接A/D转换器可将模拟信号直接转换为数字信号,这类A/D转换器具有较快的转换速度,其典型电路有并行比较型A/D转换器、逐次比较型A/D转换器。而间接A/D转换器则是先将模拟信号转换成某一中间电量(时间或频率),然后再将中间电量转换为数字量输出。此类A/D转换器的速度较慢,典型电路是双积分型A/D转换器、电压频率转换型A/D转换器。
ADC 相关文章:
- 12位串行A/D转换器MAX187的应用(10-06)
- 低功耗、3V工作电压、精度0.05% 的A/D变换器(10-09)
- 12位串行A/D转换器的原理及应用开发(10-09)
- 在射击探测器中增加口径确定功能的简单电路(11-13)
- 一种折叠共源共栅运算放大器的设计(11-20)
- 深入解析:模拟前端模/数转换器的三种类型 (11-26)
- 婵°倕鍊瑰玻鎸庮殽閸モ晙鐒婇柛鏇ㄥ灱閺嗐儳鈧鎮堕崕鎶藉煝閼测晜鏆滈柛顐g箓閹鏌熺€涙ê濮囬柣鎾规硶閹峰顢橀悢鍛婄暚缂備礁顑呴鍛淬€冨⿰鍛晳闁跨噦鎷�
闂佺ǹ绻堥崝宥夊蓟閻斿憡濯寸€广儱鎷嬮崝鍛槈閺冨倸孝闁汇劎濮甸敍鎰板箣濠婂懐鎳囨繛鎴炴尰濮樸劑鎮¢敍鍕珰闁糕槅鍘剧粈澶愭煙缂佹ê濮囩€规洖鐭傞幆宥夊棘閸喚宀涢悗瑙勬偠閸庢壆绱為弮鍫熷殑闁芥ê顦~鏃堟煥濞戞ǹ瀚板┑顕呬邯楠炲啴濡搁妷锕€娓愰梻渚囧亞閸犳劙宕瑰鑸碘拹濠㈣埖鐡曠粈瀣归崗鍧氱細妞ゎ偄鎳橀幆鍐礋椤愩倖顔忔俊顐ゅ閸ㄥ灚瀵奸幇顔剧煓閻庯綆浜為悷锟�...
- 婵炴垶鎼╅崢鐐殽閸モ晙鐒婇柛鏇ㄥ灱閺嗐儳鈧鎮堕崕鎶藉煝閼测晜鏆滈柛顐g箓閹鏌熺€涙ê濮囬柣鎾规硶閹峰顢橀悢鍛婄暚缂備礁顑呴鍛淬€冨⿰鍛晳闁跨噦鎷�
缂備緡鍣g粻鏍焵椤掑﹥瀚�30婵犮垼鍩栧畝绋课涢鍌欑剨闁告洦鍨奸弳銉╂煕閳哄喚鏀版い鏂垮閹风娀宕滆閺屻倝鏌ㄥ☉妯侯殭缂佹鎸鹃埀顒傤攰閸╂牕顔忕捄銊﹀珰闁规儳鎳愮粈澶愭煕閺傜儤娅呮い鎺斿枛瀹曘劌螣閻戞ê娓愰梻渚囧亞閸犳洟骞撻鍫濈濡鑳堕鍗炩槈閹垮啩绨婚柟顔奸叄瀵粙鎮℃惔锝嗩啅婵☆偆澧楅崹鍨閹邦喚鐭欓悗锝庝簽閻熷酣鏌i妸銉ヮ伂妞も晪绠戞晥闁跨噦鎷�...
- Agilent ADS 闂佽桨鐒﹂悷銉╊敆閻旂厧鏄ョ痪顓炴媼閸炴煡鎮归崶褍鈷旈柍璇插悑缁鸿棄螖閸曞灚顥�
婵炴垶鎸婚幐鎼侇敊瀹ュ绠抽柛顐秵閸わ箓鏌ㄥ☉妯垮闁告瑥绻樺Λ鍐閿濆骸鏁奸柣鐔哥懐閺嬪儊S闂佸憡鑹剧€氼噣锝為幒妤€绀夐柣鏃囶嚙閸樻挳鏌涘⿰鍐濞村吋鍔楃划娆戔偓锝庝簽鐎瑰鏌i姀鈺冨帨缂侀亶浜跺畷婵嬪煛閸屾矮鎲鹃梺鐑╁亾閸斿秴銆掗崼鏇熷剹妞ゆ挾濮甸悾閬嶆煛閸愩劎鍩f俊顐ユ硶閳ь剚鍐荤紓姘辨閻у挷S...
- HFSS闁诲孩鍐荤紓姘卞姬閸曨垰鏄ョ痪顓炴媼閸炴煡鎮归崶褍鈷旈柍璇插悑缁鸿棄螖閸曞灚顥�
闁荤姍鍐仾缂佽鐒︾粙澶愬箻閹颁礁鏅欓梺鐟版惈閻楁劙顢氶幎鑺ユ櫖閻忕偠妫勫鍧楁⒒閸稑鐏辨い鏂款樀楠炴帡宕峰▎绂⊿闂佹眹鍔岀€氼剚鎱ㄥ☉銏″殑闁芥ê顦扮€氭煡骞栫€涙ɑ鈷掗柡浣靛€濋弫宥囦沪閽樺鐩庨梺鍛婃煛閺呮粓宕戝澶婄闁靛ň鏅滃銊х磼椤栨繂鍚圭紒顔芥そ瀹曠兘寮跺▎鎯уΤ婵炴垶姊绘慨鐢垫暜婢舵劕绠垫い鈥抽敪SS...
- CST閻庣敻鍋婇崰妤冧焊濠靛棭鍟呴柕澶堝€楃粙濠囨倵楠炲灝鈧洟鎮$捄銊﹀妞ゆ挾鍠愬▓宀€绱掔€n亶鍎忔い銊︾矌閹叉鏁撻敓锟�
闂佸搫顦€涒晛危閹存緷铏光偓锝傛櫅閻︽粓鎮规担绛嬪殝缂佽鲸绻堝畷妤呭Ω閳哄倹銆冮柣鐘辩瀵泛顔忕欢缍璗闂佸憡鑹剧€氫即濡村澶婄闁绘棁顕ч崢鎾煕濠婂啳瀚板ù鍏煎姉缁瑧鈧綆浜炵€瑰鏌i姀鈺冨帨缂佽鲸绻堝畷婵嬪煛閸屾矮鎲鹃棅顐㈡祩閸嬪﹪鍩€椤掑倸鏋欓柛銈嗙矌閳ь剚鍐婚梽鍕暜婢舵劕绠垫い鈥愁敍T闁荤姳鐒﹀畷姗€顢橀崨濠冨劅闁哄啫鍊归弳锟�...
- 闁诲繐绻愮€氫即銆傞崼鏇炴槬闁惧繗顕栭弨銊╂煕閳哄喚鏀版い鏂垮閹风娀宕滆閺岋拷
婵炴垶鎸稿ú锝囩箔閳ь剙螖閸屾惮鎴﹀Χ婵傚摜宓侀柛鎰级閸曢箖鎮硅閸ゆ牜妲愬┑鍥ㄤ氦婵炲棗娴烽弰鍌炴偣閸パ冣挃闁宠鍚嬬粙澶嬫姜閹殿喚鈽夐梺闈╄礋閸斿矂鎯冮悩绛圭矗闁瑰鍋涜灇闂佸搫鐗滈崹鍫曘€傞锕€鏄ラ柣鏃€鐏氭禍锝夋倶閻愬瓨绀冮悗姘辨暬閹虫ê顫濋崜褏顦梺鐟扮仛閹搁绮崨鏉戦敜婵﹩鍓涢弶浠嬫煟閵娿儱顏х紒妤佹尰缁嬪顫濋鍌氭暏缂佺虎鍘搁崑锟�...
- 閻庣敻鍋婇崰妤冧焊濠靛牅鐒婇柛鏇ㄥ灱閺嗐儲绻涢弶鎴剶闁革絾妞介獮娆忣吋閸曨厾鈻曢梺绯曟櫇椤㈠﹪顢欓崟顓熷珰闁告挆鈧弻銈夋煕濮橆剛澧︽繛澶涙嫹
闁荤姵鍔﹂崢娲箯闁秴瑙﹂柛顐犲劜閼茬娀鏌¢崶銊︾稇闁汇倕瀚伴獮鍡涙偑閸涱垳顦紓鍌氬暞閸ㄧ敻宕规惔銊ノュ〒姘e亾妞わ絽澧庨幏顐﹀矗濡搫纾块梺闈涙閼冲爼濡靛顑芥灃闁靛繒濮甸悵銈夋煏閸℃洘顦峰ǎ鍥э躬瀹曪綁鏌ㄧ€n剛鍩嶉梺鎸庣☉閺堫剟宕瑰⿰鍛暫濞达絽婀辨竟澶愭煛瀹ュ妫戠紒銊ユ健閺屽懘鏁撻敓锟�...