数码相机电源电路设计及DC/DC变换器选择
定电压保持一致。
与PWM相比,PFM的输出电流小,但是因PFM控制的DC/DC变换器在达到设定电压以上时就会停止动作,所以消耗的电流就会变得很小。因此,消耗电流的减少可改进低负荷时的效率。PWM在低负荷时虽然效率较逊色,但是因其纹波电压小,且开关频率固定,所以噪声滤波器设计比较容易,消除噪声也较简单。
若需同时具备PFM与PWM的优点的话,可选择PWM/PFM切换控制式DC/DC变换器。此功能是在重负荷时由PWM控制,低负荷时自动切换到PFM控制,即在一款产品中同时具备PWM的优点与PFM的优点。在备有待机模式的系统中,采用PFM/PWM切换控制的产品能得到较高效率。 
2. 高频的优点
通过实际测试PWM与PFM/PWM的效率,可以发现PWM/PFM切换的产品在低负荷时的效率较高。至于高频方面,通过提高DC/DC变换器的频率,可以实现大电流化、小型化和高效率化。但是,必须注意的是只有通过线圈的特性配合才可以提高效率。因为当DC/DC变换器高频化后,由于开关次数随之增加的原因,开关损失也会增大,从而导致效率会有所降低。因此,效率是由线圈性能提升与开关损失增加两方面折衷决定的。
通过使用高效率的产品,相对可使用较低电感值的线圈,可以使用小型线圈,即使使用的是小型线圈也可得到相同的效率及输出电流。
使用600kHz的S-8357N33及300kHz的S-8358F33,对前面线圈在电荷特性上所作的比较可以得出在效率上两者具有相同的特性,输出电流方面两者都可得到200mA的电流。但是,如果将600kHz的DC/DC变换器所使用的小型线圈用在300kHz,就只能得到100mA左右的输出电流,原因是Ipk已超过了该小型线圈的额定电流600mA,由此可证明高频率化的确可实现产品小型化目标。
3. VDD/VOUT分离的使用方法
图4说明了有关VDD/VOUT分离的DC/DC变换器使用原理及方法。在调整输出电压的时候,或是将输出电压设定在IC的绝对最大额定值以上时,使用VDD/VOUT分离的产品。图4是VDD与VOUT分离的应用电路图。当需输出超过IC额定耐压值时,VDD接在输出电压端。VOUT是经过Ra、Rb分压后的电压,通过改变Ra和Rb的电阻值可以进行电压调整。
4. 外接器件选择
除了需要关注DC/DC变换器本身的特性外, 外接组件的选择也不能忽视。外接组件中的线圈、电容器和FET对于开关电源特性有着很大影响。这里所谓的特性是指输出电流、输出纹波电压及效率。
线圈:如果需要追求高效率,最好选择直流电阻和电感值较小的线圈。但是,如果电感值较小的线圈用于频率较低的DC/DC,就会超过线圈的额定电流,线圈会产生磁饱和现象,引起效率恶化或损坏线圈。而且如果电感值太小,也会引起纹波电压变大。所以在选择线圈时,请注意流向线圈的电流不要超过线圈的额定电流。在选择线圈时,需要根据输出电流、DC/DC的频率、线圈的电感值、线圈的额定电流和纹波电压等条件综合决定。
电容:输出电容的容量越大,纹波电压就越小。但是较大的容量也意味着较大的电容体积,所以请选择最适合的容量。 
三极管:作为外接的三极管,与双极晶体管相比,因FET的开关速度比较快,所以开关损耗会较小,效率会更高一些。
本文小结
数码相机电源设计的器件选择需要注意以下几点:
1. 选择设计灵活性較大的DC/DC变换器,扩大电路设计的范围。
2. 低消耗电流、高效率可延长电池的使用寿命。
3. 可使用小型的外接元器件,实现产品小型化。
4. 有力的技术支持工具。
最后一点是在前面没有提及的,在DC/DC设计过程中的技术支持亦是重要的环节。毕竟DC/DC在某中程度上是属于半定制产品。DC/DC是标准的,但当配上不同外接组件后可以得出不同的效率和输出电压。因此,DC/DC本身规格固然重要,但供货商的技术支持亦不可忽视。技术支持的方式可分为2部分:一部分为硬件,包括提供评估线路板、外接组件支持;另一部分为提供一些模拟软件,以便在实际测试前可以做出评估,节省设计时间。
Email: sales@sih.com.hk
- 完整两节AA电池/USB电源管理器(03-18)
- 电流检测放大器可在1.6V~28V电压范围内工作(05-07)
- 数码相机电池重组技巧分析(09-21)
- 数码相机用背照式CMOS传感器技术分析(12-19)
- CCD架构及其数码相机电源结构设计(01-01)
- 又一神级DIY!自己动手做数码相机(04-27)
