微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > HIN2xxE系列RS-232收发器的原理及应用

HIN2xxE系列RS-232收发器的原理及应用

时间:01-18 来源:国外电子元器件 作者:熊 伟 梁 青 点击:
HIN211E +5 4 5 4 0
HIN213E +5 4 5 4 2
HIN232E +5 2 2 4 0

3 HIN2xxE系列芯片的工作原理

HIN2xxE系列RS-232发送器/接收器电路由三个部分组成:电荷泵、发送器和接收器。

3.1 电荷泵

电荷泵包括倍增器和电压反相器,由其内部的125kHz时钟统一协调工作,以产生+10V与-10V电压,其等效电路如图2所示。当时钟脉冲为高电平时,电源Vcc对电容器C1充电至Voc。当时钟脉冲为低电平时,已充电至VCC的C1上电压通过电容器C3产生2VCC的电压。此外,还要对C2充电至2VCC。在随后时钟脉冲为高电平时,电容器C2的正极被接地,通过电容器C4产生-2VCC电压,并从C4的负极输出。电荷泵最多可承受5.5V的输入电压。电压倍增器部分(V+)的输出阻抗为200Ω左右,电压反相器部分(V-)的输出阻抗为450Ω左右。

在关断模式(HIN206E、HIN211E与HIN213E)下,电荷泵被关闭,V+被下拉到VCC,V-被上拉到GND,电源电流减少到10μA以下。发送器的输出端被关闭,接收器的输出端(除HIN213E的R4与R5以外)处于高阻抗状态。

3.2 发送器

发送器是将输入的TTL/CMOS电平转换成RS-232所要求电平的电平转换反相器。输入端的门限电压是26%VCC(当VCC=5V时,门限电压为1.3V)。输入高电平可在发送器输出端产生一个-5V至V-之间的电压,而输入低电平则会产生一个+5V至(V+-0.6V)的电压。发送器的每个输入端都有一个400kΩ的内部上拉电阻器,因此未用的输入端不必连接,并且输出端仍保持低电平状态。在最恶劣的条件,所有的发送器驱动3kΩ的负载电阻、Vcc=4.5V、温度达到允许的最大工作温度时,发送器的输出电平仍能满足RS-232的要求。输出端受短路保护并且可以不受限制地短接到地线。

3.3 接收器

接收器可将±5V的RS-232电平转换为TTL或CMOS逻辑电平。接收器的输入端可以接收±30V的电压,接收器输入门限的典型值为1.3V,输出电平为0V~VCC。当输入电平大于2.4V时,输出端为低电平;当输入端悬空或者在+0.8V与-30V之间时,输出端为高电平。接收器还有0.5V的滞后(除非是在关断时),可以提高噪声抑制功能。接收器使能脚EN(HIN213E为EN脚)无效时,可关闭接收器的输出,并将它们置于高阻抗状态。在关断模式中,接收器的输出端也被置于高阻抗(除HIN213E的R4与R5以外)。

4 典型应用电路

在HIN2xxE系列电路的典型应用中,电容器C1-C4的值为0.1μF,但这个值不是临界值。增加C1与C2的值会降低电压倍增器与反相器的输出阻抗,而增加存储电容器C3与C4的值则会降低V+与V-电源端的脉动。

HIN213E的二个接收器R4与R5在关断模式中仍保持有效。在正常操作时,接收器的传送延迟时间的典型值为0.5μs。在关断时,该延迟时间稍微有所延长。进入关断模式时,接收器R4与R5在SD=VIL之后保持无效80μs。在退出关断模式时,所有的接收器输出将为无效,直到电荷泵电路达到正常的工作电压为止。在采用0.1μF的电容器时,电荷泵电路达到正常工作电压所需时间一般在2ms以内。

图3是一个简单的带有CTS/RTS信号交换功能的双工RS-232。通过一个连接到V+的5kΩ电阻器驱动,可以产生固定输出信号,如DTR(数据端就绪)与DSRS(数据信号发送速率选择)。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top