谐振式八臂螺旋天线螺旋天线设计
一、 引 言
螺旋天线(helical antenna)是一种具有螺旋形状的天线。它由导电性能良好的金属螺旋线组成,通常用同轴线馈电,同轴线的心线和螺旋线的一端相连接,同轴线的外导体则和接地的金属网(或板)相连接。螺旋天线的辐射方向与螺旋线圆周长有关。当螺旋线的圆周长比一个波长小很多时,辐射最强的方向垂直于螺旋轴;当螺旋线圆周长为一个波长的数量级时,最强辐射出现在螺旋旋轴方向上。螺旋天线是天线的一种,可以收发空间中旋转的偏振电磁信号。这种天线通常用在卫星通讯的地面站中。用非平衡馈线,比如同轴电缆来 螺旋天线连接天线,电缆中心连接在天线的螺旋部分,电缆的外皮连接在反射器上。
众所周知,天线一直是卫星移动通信和全球定位系统(GPS)的一个技术难点,因为它除了必须满足宽频带、宽波束和圆极化等一系列苛刻的电气性能指标之外,还要做到体积小、重量轻,谐振式四臂螺旋天线因容易达到这些要求而得到了广泛的应用。与一般的行波螺旋天线完全不同,这种天线由4根长 mλ/4(m为一个整数、λ为波长)的螺旋臂组成,每根臂上的电流幅度相等、相位两两相差90°,它的末端(即非馈电的那一端)在m取偶数时必须短路,在 m取奇数时必须开路。作为一种谐振式天线,工作频带窄是其固有的缺点。尽管为了解决这个问题,人们想出了许多方法,但一直未能取得令人满意的效果。本文首先对这种新型天线的工作原理作一个简单的介绍,然后阐述设计过程中的几个关键技术,最后还通过给出实测的数据来说明该天线的各项性能指标。
二、 工作原理
1.宽频带工作原理
尽管采用较粗的螺旋臂可使四臂螺旋天线输入端的电抗随频率的变化变得较慢,因而能在一定范围内改善频带特性,但这种改进受到很大的限制,且付出的代价是增加了天线的重量和加工难度。为了能真正实现宽带工作,我们以这种天线为基础设计出的八臂螺旋天线如图 1所示。这种新型天线由两付形状相同,共轴放置,但臂长不同的四臂螺旋天线组成。
图 1 八臂螺旋天线
2.圆极化工作原理
对于一个八臂螺旋天线,由于就工作特性而言,一根馈电臂与跟它相邻的那根寄生螺旋臂可等效成一根很粗的螺旋臂,因而它的圆极化工作原理跟四臂螺旋天线完全相同。不失一般性,我们假设螺旋臂的长度为λ/2,旋转角度为180°。在这种情况下,由于天线处于谐振工作状态,臂上的电流幅度接近正弦分布,其中最大值位于馈电点和短路点,零点位于螺旋臂的中部,那么我们就可得到由相对的两根螺旋臂构成的双臂螺旋天线的简化模型,如图 2(a)所示。此处我们选择螺旋中心为原点,螺旋轴为Z轴,顶面和底面上天线臂的平行线为Y轴来建立坐标系,另外柱面上的螺旋部分近似用直线和半圆的组合来代替,图中的实箭头表示电流方向,虚箭头表示圆上电流的矢量和。显然该模型可更进一步简化为图 2(b)所示的一个YZ平面上的电流环和一个X轴上的电偶极子的组合。根据天线的基本原理,由于这两组电流环和电偶极子互相垂直且相差90°,那么在远区得到的是一个宽波束的心脏形圆极化方向图。
图 2 八臂螺旋天线等效图
三、 关键技术及其实现方法
1.馈电方式的选择
采用何种馈电方式,直接影响到天线的工作频带和方向图的圆极化性能。由于这种螺旋天线要求四条馈电臂上的电流幅度相等、相位两两相差90°,因此较为常用的方法是将四根长为λ/4、电流分布符合要求的同轴电缆直接跟螺旋臂相连,但这是一种窄带馈电方法,在工程上也不易于实现。
2.展宽波束的途径
尽管减少螺旋的直径与高度之比能使波束变宽,但它对θ面和Ф面方向图的影响不同,因而轴比小于3dB的波束仍然不宽,并且还会出现主瓣分裂现象。为了达到展宽波束的目的,我们在天线的下面附加一块长和宽均在1.25λ左右的金属反射板,这使得天线的最大辐射方向发生偏移,而在轴线方向出现一个凹坑。
3.结构
为了保证天线的电气性能指
标和可靠性,我们采用了不同于四臂螺旋天线的结构。在天线的顶部有一个塑料圆盘,起到固定螺旋臂和减少两根垂直馈电电缆相互耦合的作用;天线的底部有一个金属安装盒,以便把八根螺杆焊接在一起。塑料圆盘、金属安装盒和底面反射板则通过一根高强度的不锈钢圆杆固定在一起。
四、 实验结果
我们按照上面的思路设计了一个八臂螺旋天线,它的具体参数如下:
螺旋臂长度:λC/2
螺旋高:0.27λC
螺旋直径:0.146λC
螺旋臂直径:0.006λC
螺旋臂旋转度数:180°
螺旋中心距底板距离:
- 基于准谐振型软开关的高频开关电源变换器(12-27)
- 准谐振反激的原理介绍及应用参数计算(08-17)
- RLC串联电路谐振特性的Multisim仿真(02-15)
- 一种小型化的负介电常数零阶谐振天线设计(03-11)
- 解读什么是谐振电路的品质因数(Q值)(08-02)
- 一款并联谐振逆变电源设计方案(08-17)