微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 硬件工程师文库 > 低压差(LDO)调节器的噪声源

低压差(LDO)调节器的噪声源

时间:03-09 来源:3721RD 点击:

声。

  LDO易于使用,但PSRR和内生噪声常常令人困惑。许多情况下,都将二者一起简单地归类为噪声,这是对性能指标的误用,因为这两种噪声具有不同的特性,并且用于降低其对系统性能影响的方法也不同。

  图1为LDO的简单框图,显示了内部噪声源与外部噪声源的区别。误差放大器决定LDO的PSRR,因而也决定了其抑制输入端噪声的能力。内部噪声则始终出现在LDO的输出端。

图1. 显示内部和外部噪声源的简化LDO框图

  内部噪声

  内部噪声有许多来源,各种噪声源都有自己独一无二的特性。图2显示了一个典型器件的噪声如何随频率而变化,以及各类噪声对总噪声的贡献。从1/f区到热区的跃迁点称为转折频率。内部噪声主要有以下几类:热噪声、1/f噪声、散粒噪声、爆裂或爆米花噪声。

图2. 典型噪声功率与频率的关系

  热噪声

  在绝对零度以上的任何温度,导体或半导体中的载流子(电子和空穴)会发生扰动,这就是热噪声(亦称约翰逊噪声或白噪声)的来源。热噪声功率与温度成比例。它具有随机性,因而不随频率而变化。

  热噪声是一个物理过程,可以通过下式计算:

\

  其中:

  k表示波尔兹曼常数(1.38-23 J/K)。

  T表示绝对温度(K = 273°C)。

  R表示电阻(单位Ω)。

  B表示观察到噪声的带宽(单位Hz,电阻上测得的均方根电压也是进行测量的带宽的函数)。

  例如,一个100 k电阻在1 MHz带宽和室温下给电路增加的噪声为:

\

  1/f噪声

  1/f噪声来源于半导体的表面缺陷。1/f噪声功率与器件的偏置电流成正比,并且与频率成反比,这一点与热噪声不同。即使频率非常低,该反比特性也成立,然而,当频率高于数kHz时,关系曲线几乎是平坦的。1/f噪声也称为粉红噪声,因为其权重在频谱的低端相对较高。

  1/f噪声主要取决于器件几何形状、器件类型和半导体材料,因此,要创建其数学模型极其困难,通常使用各种情况的经验测试来表征和预测1/f噪声。

  一般而言,具有埋入结的器件,如双极性晶体管和JFET等,其1/f噪声往往低于MOSFET等表面器件。

  散粒噪声

  散粒噪声发生在有势垒的地方,例如PN结中。半导体器件中的电流具有量子特性,电流不是连续的。当电荷载子、空穴和电子跨过势垒时,就会产生散粒噪声。像热噪声一样,散粒噪声也是随机的,不随频率而变化。

  爆裂或爆米花噪声爆裂或爆米花噪声是一种低频噪声,似乎与离子污染有关。爆米花噪声表现为电路的偏置电流或输出电压突然发生偏移,这种偏移持续的时间很短,然后偏置电流或输出电压又突然返回其原始状态。这种偏移是随机的,但似乎与偏置电流成正比,与频率的平方成反比(1/f2)。

  由于现代半导体工艺技术的洁净度非常高,爆裂噪声几乎已经被消除,不再是器件噪声的一个主要因素。

  外部噪声

  外部噪声源远多于内部噪声源,包括以下几类:

  ● 耦合到敏感电路中的电磁场。

  ●导致压电材料产生干扰交流电压的机械冲击或振动。

  ●来自其他电路,通过电源或设计不佳的PCB布局布线传导或辐射到电路中的噪声。

  电磁耦合

  电磁场可以通过以下一种或多种方法在电路中感应噪声:

  辐射耦合、容性耦合、感性耦合和传导耦合。通过适当的PCB布局布线和屏蔽技术,可以降低此类耦合的影响,但这不在本应用笔记的讨论范围之内。

  压电效应

  某些器件,如高容值多层陶瓷电容等,对机械冲击和振动敏感(即具有颤噪效应),这是因为其结构中使用了高介电常数材料。这些电介质具有高压电性,很容易将微小的机械振动转换为毫伏甚至微伏电平信号。因此,低电平信号链电路中不推荐使用高容值陶瓷电容。

  虽然薄膜电容不具有压电性,但它也对振动敏感,这是因为薄膜电介质上的任何机械应力都会使薄膜厚度发生细微变化,导致电容略微增大或减小。电容中存储的能量是恒定的,因此电压必须略微改变以适应电容变化。能量、电容和电压之间的关系可通过下式来描述:

\

  机械应力消除后,电容上的电压回到其原始状态。如果机械应力是周期性的,则将产生一个小交流电压。

  电源噪声

  电源噪声和纹波一般是LDO输出端仅次于内部噪声的最主要噪声源。根据噪声源的频谱成分,LDO可以大大改善下游电路的电源质量。

  在许多系统中,来自交流电源或电池的电源由高效率开关模式电源转换为中间电压,以便在整个系统中分配。这些中间电压在使用点被转换为特定电压。

  开关模式电源的噪声主要取决于其拓扑结构和负载状态。

频谱成分可以是从数Hz到数十MHz.许多情况下,为了给敏感的模拟负载供电,需要通过LDO净化高噪声电源分配总线。LDO抑制输入源噪声的能力取决于其PSRR以及它如何随频

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top