UPS应用中的误区及过电压防护介绍
元件,而GDT则是短路型元件。一旦GDT动作之后,呈近似短路的低阻状态,其短路动作将可能持续半个周波(10ms)左右,直至过零点时才能中断。因此,气体放电管一般需要与短路保护器件(例如保险丝或断路器等)配合使用。
C).GDT的动作电压精度较MOV要低,通常MOV的动作电压精度为±10%,而GDT的动作电压精度为±20%。
对于户外型UPS,由于雷电浪涌及操作过电压频繁,考虑到短路保护器件的恢复并不方便,一般不宜直接采用气体放电管作过电压防护器件。
5.3组合方案
由于MOV和GDT具有不同的性能特点,其应用也有较大差异。理想的过电压防护器件要求漏电流小、动作响应快、残压低、不易老化等,而现有单一器件并不能完全符合要求。
为了结合两种器件的特点,可以将两种器件进行组合使用,以发挥器件各自所长。
两种器件串联使用的方式,MOV的漏电流比GDT要大,而GDT则不存在该问题;但GDT则存在跟随电流的问题,与MOV串联使用后,MOV对其具有一定的限流作用,并可以及时地中断跟随电流。
在实际应用中,还可以改进,在放电管两端并接电容器。发生电涌时,电容器初始充电状态相当于短路,令MOV率先导通,同时电容器又作为GDT的蓄能元件;电容器充电完毕,GDT导通并形成电容器的放电回路。
为了降低负载端的残压幅度,还需要同时在UPS的输出端加一级SPD,这样就构成了两级SPD防护网络。SPD1作为第一级过电压防护器件,电涌入侵时有较高的残压,而SPD2则作为第二级过电压防护,其残压较低。
6.结束语
过电压防护器件的故障同样也是UPS的故障,同样会给UPS的使用和维护带来极大的不便,在较低成本的条件下,选择设计适当的过电压防护措施,已经成为现代UPS应用的重要环节。
- 基于单片机控制的UPS抗干扰技术(10-12)
- 通信机房安全隐患整改UPS应用方案(10-21)
- 细分MTTR对模块化UPS系统可用性的影响(12-02)
- 传统UPS与模块化UPS优劣分析(12-02)
- 应急电源用的EPS和UPS电源(12-03)
- UPS蓄电池的选择与维护(05-23)