基于全桥式变压器开关电源设计的分析
摘要:全桥式变压器开关电源也属于双激式变压器开关电源。它同时具有推挽式变压器开关电源电压利用率高,又具有半桥式变压器开关电源耐压高的特点。由于全桥式变压器开关电源经常用于工作电压高,输出大功率大的场合,因此,本文主要是基于全桥式变压器开关电源设计进行分析。
1 全桥式变压器开关电源的工作原理
全桥式变压器开关电源工作原理与推挽式变压器开关电源以及半桥式变压器开关电源的工作原理是很相似的,我下面先来了解全桥式变压器开关电源工作原理。如下图1所示是全桥式变压器开关电源工作原理图。图中,K1、K2、K3、K4是4个控制开关,它们被分成两组;K1和K4为一组,K2和K3为另一组。开关电源工作的时候,总是一组接通,另一组关断,两组控制开关轮流交替工作;T为开关变压器,N1为变压器的初级线圈,N2为变压器的次级线圈;Ui为直流输入电压,R为负载电阻;uo为输出电压,io为流过负载的电流。
从上面的原理图中可以看出,控制开关K1和K4与控制开关K2和K3正好组成一个电桥的两臂,变压器作为负载被跨接于电桥两臂的中间。因此,我们把图1的电路称为全桥式开关电源电路。图中,当控制开关K1和K4接通时候,电源电压Ui被加到变压器初级线圈N1绕组的a、b两端,同时,由于电磁感应的作用在变压器次级线圈N2绕组的两端也会输出一个与N1绕组输入电压Ui成正比的电压,并加到负载R的两端,使开关电源输出一个正半周电压。
当控制开关控制开关K1和K4由接通转为关断的时候,控制开关K2和K3则由关断转为接通,电源电压Ui被加到变压器初级线圈N1绕组的b、a两端;同理,由于电磁感应的作用在变压器次级线圈N2绕组的两端也会输出一个与N1绕组输入电压成正比的电压,并加到负载R的两端,使开关电源输出一个负半周电压。
当控制开关K1和K4接通时候,电源电压Ui被加到变压器初级线圈N1绕组的a、b两端,在变压器初级线圈N1绕组中将有电流经过,通过电磁感应会在变压器的铁心中产生磁场,并产生磁力线;同时,在初级线圈N1绕组的两端要产生自感电动势e1,在次级线圈N2绕组的两端也会产生感应电动势e2;感应电动势e2作用于负载R的两端,从而产生负载电流。
2 全桥式开关电源变压器参数的计算
全桥式变压器开关电源的工作原理与推挽式变压器开关电源的工作原理是非常接近的,只是变压器的激励方式与工作电源的接入方式有点不同;因此,用于计算推挽式变压器开关电源变压器初级线圈N1绕组匝数的数学表达式,同样可以用于全桥式变压器开关电源变压器初级线圈N1绕组匝数的计算。
2.1全式开关电源变压器初级线圈匝数的计算
全桥式变压器开关电源与推挽式开关电源一样,也属于双激式开关电源,因此用于全桥式开关电源的变压器铁心的磁感应强度B,可从负的最大值-Bm,变化到正的最大值+Bm,并且变压器铁心可以不用留气隙。全桥式开关电源变压器的计算方法与前面推挽式开关电源变压器的计算方法基本相同,根据推挽式开关电源变压器初级线圈匝数计算公式:
由上面的公式看出,虽然是用来计算推挽式变压器开关电源变压器初级线圈N1绕组匝数的公式,但对于全桥式变压器开关电源变压器初级线圈匝数的计算同样有效。
式中,N1为变压器初级线圈N1绕组的最少匝数,S为变压器铁心的导磁面积(单位:平方厘米),Bm为变压器铁心的最大磁感应强度(单位:高斯);Ui为开关电源的工作电压,即加到变压器初级线圈N1绕组两端的电压,单位为伏;τ = Ton,为控制开关的接通时间,简称脉冲宽度,或电源开关管导通时间的宽度(单位:秒); F为工作频率,单位为赫芝,一般双激式开关电源变压器工作于正、反激输出的情况下,其伏秒容量必须相等,因此,可以直接用工作频率来计算变压器初级线圈N1绕组的匝数;F和τ取值要预留20%左右的余量。式中的指数是统一单位用的,选用不同单位,指数的值也不一样,这里选用CGS单位制,即:长度为厘米(cm),磁感应强度为高斯(Gs),磁通单位为麦克斯韦(Mx)。
2.2交流输出全桥式开关电源变压器初、次级线圈匝数比的计算
全桥式变压器开关电源如果用于DC/AC或AC/AC逆变电源,即把直流逆变成交流,或把交流整流成直流后再逆变成交流,这种逆变电源一般输出电压都不需要调整,工作效率很高。
用于逆变的全桥式变压器开关电源一般输出电压uo都是占空比等于0.5的方波,由于方波的波形系数(有效值与半波平均值之比)等于1,因此,方波的有效值Uo与半波平均值Upa相等,并且方波的幅值Up与半波平均值Upa也相等。所以,只要知道输出
- EMI噪声分析及EMI滤波器的设计(10-07)
- 开关电源的EMC设计(09-15)
- 多层线路板在开关电源电路中应用(11-07)
- 双激式开关电源变压器存在的风险(01-20)
- 开关电源的分类及应用(02-17)
- 开关电源控制环路如何设计(04-11)