基于SPWM对农用小功率单相变频控制系统的设计
摘要:针对农用小功率三相交流电机不易获取三相电源而无法广泛应用的问题,设计了一种在农用220 V单相交流电源的情况下,可输出电压幅值可无级调控的三相交流变频系统,能够实现小功率三相交流电机在农用单相电源的情况下广泛地使用。
实验结果表明:当输入220 V交流电源时,可输出三相可控的交流电源。系统硬件设计合理,为农用小功率电源的变频控制的广泛应用提供了技术支持。
0 引言
目前,国内外关于交流变频技术的研究很多,但大多是对针对中、高等级功率的三相交流变频技术的研究,对于农用小功率电器研究较少,对农用单相变频系统的具体设计较少。而随着农用电器在农业、家电上的广泛使用,小功率的单相输入、三相交流输出变频技术可解决这一实际的问题。为此,本文设计了一套基于SPWM 算法单相交流变频调速系统,以单相交流220 V为输入电源,经过单相不可控桥式整流,再经过大电容滤波,获得稳定的直流270 V 电压,再经过三相桥式逆变电路,获得电压幅值可调的三相交流电,供给三相交流电机工作。
1 系统总体设计方案
系统基于变频控制的基本原理,采用恒定V/F比值控制,保持输入电压幅值与频率成线性关系,通过单片机实现SPWM控制。
1.1 系统功能结构
系统的结构框图如图1所示,系统采用交-直-交电力电子变压变频的典型结构。单相交流220 V为输入,经过单相不可控桥式整流,再经过大电容滤波,获得稳定的直流270 V 电压,再经过三相全波逆变电路输出。
同时,控制电路根据SPWM 控制的算法原理,计算出调频和调幅的大小,并与变频器反馈的输出电流进行比较分析,得出理想的控制波形通过驱动电路以驱动开关器件IGBT的开通与关断,从而输出频率幅值可调的三相交流电。系统主要功能有直流电压检测、输出电流采集、温度采集及保护、短路保护、过流保护。控制系统控制电路选用的是16位单片机dsPIC30F6010A,以实现对各个参数的调节和对系统的保护等功能。
1.2 SPWM波形算法原理
通过傅里叶分析得知,SPWM波形输出的基频幅度为:
式中:N 为半个波形中的脉宽个数;Um 为输入电压的幅值。当N>1时有U1m>Um,因此输出电压基波正是调制时所要求的正弦波,同时还可知这种SPWM发生方法可以有效抑制k=2N-1次以下的低次谐波,存在高次谐波。
加在交流感应电机的三相绕组上的电压分别为:
式中:Em 为电压幅值;ω 为输出电压的角频率;ω = 2πf ,f 为输出电压的频率,也就是波形发生器的调制频率。相位上互差120°的三相电压加到感应电机的绕组中,产生三相电流,形成一个圆形的旋转磁场,带动电机转子转动。恒定V/F比值控制时,输入电压幅值与频率成线性关系,而被控制的电机一般具有简单的V/F线性关系,则可以用计算方法来代替V/F表[4].图2描述了V/F控制具体计算流程。
2 系统的SPWM控制电路
SPWM 控制电路主要由dsPIC30F6010A 单片机、MC54HC244、PNP 三极管Q1、供电电源、电容和电阻等组成,如图3 所示。R1 为Q1 的集电极电阻和MC54HC244 的上拉电阻,使信号箝位在高电平,从而提高芯片输入信号的噪音容限,以增强抗干扰能力,同时,也起到限流作用。R2 为Q1 的基极电阻,起限流作用。C1 并接在5 V 电源和地之间,作为支撑电容、蓄电池作用。当逆变器正常工作时,电流检测的值与SPWM计算给定值进行比较,得到高电平,单片机SPWM 故障引脚FLTA输入高电平信号,允许SPWM波输出。同时,Q1导通,MC54HC244使能端G为低电平,输出端Y输出SPWM 信号。当逆变器发生短路等故障时,Q1 截止,MC54HC244使能端G为高电平,封锁SPWM信号输出,实现硬件保护。同时,单片机故障引脚FLTA接入低电平,封锁SPWM波输出,实现软件保护。
3 SPWM系统的软件实现
系统软件的主要任务是输出SPWM 波供给驱动电路,以驱动IGBT 逆变回路,同时处理采样电路反馈信号,实现电压及电流的控制。SPWM波主程序的设计包括5个部分,即初始化、边缘参数识别、频率和幅度的计算、相位增量和幅度调制系数的计算。初始化中又包括I/O口、SPWM时基寄存器和A/D转换的设置。设置SP-WM的控制寄存器,使SPWM定时器工作在SPWM发生方式,定时器清除时钟使用周期匹配,周期中断设为每个周期中断一次,计数边沿使用时钟的上升沿。主程序流程图如图4所示。
4 实验测试
系统运用MPLAB软件集成开发环境IDE 8.53中的在线调试器MPLAB ICD2对本系统进行调试。MPLABIDE 软件是一个带有用于编程开发和调试微芯单片机设计应用程序的工具包的桌面开发环境。MPLAB
- 基于SPWM的交流稳压电源设计方案(09-15)
- 三相脉冲宽度调制在变频器中的实现(09-01)
- 数字化中频SPWM逆变电源控制系统(11-20)
- 三相SPWM的设计及其优化方法简介(12-30)
- 三相SPWM在变频器中的实现方法(12-30)
- 全桥逆变单极性SPWM控制方式过零点振荡的研究(12-11)