高频感应加热电源模数结合连续可调移相电路研究
摘要:为减小开关损耗和防止开关管损坏,通常要求高频感应加热设备工作在弱感性状态,为此必须在反馈回路进行相位的超前、滞后调节。传统的高频模拟移相电路存在移相角随输入信号频率变化时刻发生变化的缺点,而高频数字移相电路在移相精度要求较高时倍频难以实现。为此,文中提出了两种实用的高频模数结合移相电路实现移相角在任意需要角度范围内连续可调移相。经实验,在光伏电池片组件1 MHz高频感应焊接时满足移相要求,移相效果好。
关键词:高频;感应加热;模数结合;连续可调移相
高频感应加热设备,因容性工作状态时存在开关管硬开通、开关损耗大以及反并联的二极管有反向恢复等问题,严重时会损坏开关管,故逆变主电路通常工作在弱感性状态,即使输出电压的相位略超前于输出电流的相位。而且,反馈回路的各个芯片,在脉冲到来时都有一定的响应时间,使驱动芯片输出信号的相位必定滞后于采样信号的相位,因此必须在反馈回路中进行相位的超前、滞后调节,实现移相功能。
传统的移相方法是采用如RC或LC的模拟电路进行相位调节。这种移相电路是利用电阻两端的电压与输入电压同相位,而电容两端电压滞后于输入电压90°相位,电感两端电压超前输入电压90°相位的特性,通过选择不同的RC或LC值实现所需角度的相位超前、滞后调节。但电路中由于存在L、C等元件,其等效阻抗与输入信号的频率有关,移相角会随输入信号频率的变化而变化,故其仅适用于输入信号频率不变或频率变化时移相精度要求不高的场合。而纯数字电路若要使1 MHz频率产生如1°左右相移时,必须先把输入信号频率通过锁相倍频电路把频率放大360倍,这就要求锁相环必须既可输入1 MHz左右的信号也能输出360 MHz以上的信号,能满足这种要求的锁相环芯片即使存在也会由于价格太高不是很实用。
为此,有必要设计一种低成本的实时实用移相电路,使其移相角在频率变化时基本不变。文中就是基于这种需求,提出了两种移相精度较高的模数结合移相电路,经实验在1 MHz高频感应加热场合完全适用。
1 模数结合移相电路(一)原理
图1是一种由高速比较器、锁相倍频电路和J-K触发器构成的90°~180°连续可调模数结合移相电路。B处的信号是从串联逆变主电路电流采样放大后获得的,若与过零比较器比较,则输出占空比为0.5的方波信号。通过调节A处电平与B处0电平以上的正弦波上升沿脉冲比较,使C处输出方波上升沿滞后一个相角度,构成一个0°~90°连续可调的移相电路。若所需移相角小于90°,则无需后级的锁相倍频和J-K触发器构成的90°移相电路。74HC4046是由压控振荡器(VCO),相位比较器(PC1、PC2、PC3)的和外围的环路滤波器(LF)组成的锁相环,3脚和4脚输出信号占空比始终为0.5,与输入信号的占空比无关。图中R1、C1决定VCO的频率范围,电阻R2决定VCO的中心频率,如果R1、R2、C1选择合理,将简化外围LF的设计。为了减轻LF的负担,10脚解调器输出接高阻至地。LM319输出的占空比不超过0.5的数字信号经锁相环内部的自偏放大器,上升沿触发的频率和相位观测器PC2,R3、R4、C2构成的低通滤波器以及内部的VCO实现锁相,输出送给下降沿触发的可做分频器的74HC4040进行2分频,使74HC4040的9脚输出信号频率是10脚(也即锁相环4脚)输入信号频率的一半。由于锁相环3脚的信号来自74HC4040的9脚输出,分频器10脚的信号来自锁相环的4脚输出,因此,锁相环4脚输出频率是其14脚输入信号频率的2倍,实现锁相倍频功能。当锁相环3脚信号与14脚输入信号的频率和上升沿相位不一致时,内部电路会进行自动动态补偿调节,实现两者频率和相位的完全一致。然后,将锁相环4脚输出信号送入上升沿触发的J-K触发器74HC109,在时,时钟脉冲上升沿到来时状态翻转,下降沿到来时状态不变,而锁相倍频后D处信号的上升沿较锁相环14脚输入信号的上升和下降沿均滞后90°,实现90°移相的目的。上述分析的原理图中各点的理想工作波形如图2所示。
若要实现180°~360°的移相,只需在整个移相电路后接一个反相器。若要实现90°~135°连续可调移相,只需将图1中74HC4040接9脚的2分频改成接7脚的4分频,在输出端F的后面再接一级上升沿触发的2分频电路。若要实现90°~90°以上更小范围内的移相,只需将图1中74HC4046换成NE564或其他更高频率
- 严酷的汽车环境要求高性能电源转换(08-17)
- 管理多电压轨系统让数字电源管理变得简单(08-17)
- 电源监视器LTC4151对汽车应用的解决方案(08-10)
- 具USB OTG和过压保护的紧凑型电源管理器(08-17)
- 适合有源天线系统并内置保护和诊断功能的坚固、低噪声、稳定型电源(08-16)
- 并联充电器系统可从以往不可用的低电流电源收集功率(08-23)