微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 硬件工程师文库 > 一种隔离调压式交流电源的设计制作

一种隔离调压式交流电源的设计制作

时间:10-31 来源:3721RD 点击:

在0~260 V范围内。根据输出功率300 W的要求,选择B1的功率≥500 W.综合考虑"隔离调压式交流电源"的体积、功率等要求,选择了B1为TDG2型接触式自耦调压器,其参数有:输出功率500 W;调压范围0~275 V.

  2.3 漏电保护器

  漏电保护器是一种防止人身触电事故的安全防护装置,当电路中发生漏电或触电时,可以在很短时间内切断整个电路。

  1)漏电保护器的基本工作原理

  如图3所示,当负载发生漏电故障时,电流通过大地形成回路,负载侧对大地形成泄漏电流,穿过零序电流互感器CT的电流的矢量和不等于零。零序电流互感器CT感应出一个零序电流,当零序电流达到整定值,经放大器FA放大后驱动跳闸线圈Q,线圈Q通电产生磁场,吸动衔铁使开关K断开,线路及电器失去电源,从而保护了人身和电气设备的安全。

  漏电保护器,有两种类型:即电压动作型和电流动作型,而电压动作型由于自身的种种弊端而被淘汰,现主要应用是以电流动作型漏电保护器为主。

图3 漏电保护器结构原理

2)漏电保护器设计选择

  针对"隔离调压式交流电源"功能要求和使用对象,依据额定电流In、额定漏电动作电流I△n、漏电动作分断时间动作时间、额定漏电不动作电流I△n0等参数进行设计选择。

  额定电流In.指能够持续流过漏电保护器的最大负载电流。这需要根据试验设备的功率之和Po来计算确定,即:In=Po/220.因为设计要求Po输出≥300 W,所以选择漏电保护器的额定电流In≥1.36 A.计算电流略大一点的漏电保护器,这样,在正常使用中,不至于漏电保护器因过负荷经常动作,影响正常使用。

  额定漏电动作电流I△n.是漏电保护器一个重要的参数,是漏电保护器在规定的工作条件下必须动作的漏电电流值。当试验设备或漏电电流达到某一规定值时,漏电保护器必须可靠断开电路,使试验电器设备失去电源。一般情况下,应选择漏电电流为30 mA的高灵敏度型的漏电保护器。

  漏电动作分断时间动作时间。是从突然施加漏电动作电流开始到被保护的电路或设备完全被切断电源为止。漏电保护器的动作时间可分为3种,以保证在人身触电时的安全保护作用和适应分级保护的需要。快速型:动作时间不超过0.1 s.定时限型:动作时间不超过0.1~2 s.反时限型:动作电流时,动作时间不超过1 s;2倍动作电流时,动作时间不超过0.2 s;5倍动作电流时,动作时间不超过0.03 s.在选择漏电保护器时,自然以安全为主,应当选用快速型、动作时间不超过0.1 s的漏电保护器。

  额定漏电不动作电流I△n0.漏电保护器选择,应保证在电路中出现规定值的漏电电流时应该保证正常动作,也应该在故障电流没有达到规定值,保证不动作。为此,漏电保护器的I△n0≯30 mA.

  综上述分析设计,选择型号为DZ47LE-32漏电保护器,技术参数为:额定电流In=10 A;I△n=30 mA;动作时间t≤0.1 s;能够满足设计要求。

  3 结构设计

  根据"隔离调压式交流电源"工作原理,其结构设计有两种:按图1所示,漏电保护器设计在电源输入端的最前端,能够实现一旦发生漏电问题,能够及时断开输入市电电源。保险丝安装在次后,一旦试验设备发生过载,或出现短路问题,及时熔断,切断市电火线(L)通路。再之后接入自耦调压器和隔离变压器。而两种结构的区别在于第一种结构是自耦调压器在隔离变压器的前端;第二种结构是隔离变压器在自耦调压器的前端。由于自耦调压器、隔离变压器在通电时自身都消耗功率,通过实验得出自耦调压器空载功率消耗33 W,隔离变压器空载功率消耗15.4 W;在两种结构输出效率基本相同条件下,选择第一种结构比较合理,即图1所示结构;因为选择的自耦调压器输出功率及效率大于隔离变压器的输出功率和效率,能够减小结构的功率消耗和隔离变压器输出功率的压力。

  输入、输出电压和输出电流都通过电表指示,安装在面板上;保险丝、漏电保护器等器件设计安装在便于维修、操作的位置。特别是输入、输出的接线插头、插座,采用良好的固定方法、工艺,使之接触良好、牢靠。

  4 实验验证

  "隔离调压式交流电源"设计的原理、器件选用和结构,是否科学合理,能否达到设计性能指标要求,必须通过实验加以验证。为此,将DZ47LE-32漏电保护器、保险丝(1.5A)、TDGG2型自耦调压器、300 W隔离变压器和有关指示电表等,进行组装测试。

首先将自耦凋压器与隔离变压器组装在一起,市电220 V交流电接在自耦调压器的输入端,输出端接隔离变压器的输入端,隔离变压器的输出端接入300 W的阻性负载;测试的输出电压调节范围、输出功率、效率和部件工作温度等参数如表

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top