分析多电源电路的可靠性设计
同时输出高电平有效和低电平有效的复位信号。复位信号可由VCC 电压、手动复位输入或由独立的比较器触发。因此可以利用MAX708的这个特点来解决电路内MCU、FPGA、ASIC的上电复位问题。
如图3所示,当PFI端子上的电压值小于1.25V时,PFO端子将输出低电平。由于PFI端子的这个特性,可以用它来监控电路上的1.5V电压。在通信设备里,电路上一般含有5V、3.3V、2.5V、1.8V、1.5V的电压值,1.5V应该属于末级电压,就是说通过直流电压转换器最后转压出来的,我们监控了最小电压,自然也就不必理会它的上级电压了。
图3:实现上电复位应用。
这里PFI上的电压值大概为1.3V,当然电压值越接近1.25V,电压监控的灵敏度越高。可以用公式{(Vsupply-VPFI)/R1}=(VPFI/R2)计算出需要的电阻比值。这里Vsupply为1.5V,VPFI为1.3V.
可以想象,电路上电过程中,1.5V的末级电压如果没有达到要求,复位信号将一直存在,包括给MCU的RST复位信号,和给其它芯片的低电平有效的复位信号。图3中的MREST为手动添加的复位信号。
需要指出的是,可以监控VCC电压,这对电路采用多电源模块的设计是很有用的。因为两个电源模块相互独立,5V和1.5V可能不是源于同一个电源模块,所以在监控1.5V的同时也需要监控5V电压。
当然,由芯片本身的限制,它无法监控小于1.25V的电压。但是在电信级设备中,功耗问题并不很迫切,所以这样小的电压基本上应用很少。
本文小结
电源波动造成的电路上电失败故障,只是涉及电源可靠性的一个方面。这里举的一个实际应用的例子可能并不适合于各种情况,其目的只是在于提醒设计人员在有关电源设计中可能存在的隐患。硬件工程师在应用这些器件进行系统功能设计的同时,也将越来越多的面临如何提高电源可靠性方面的挑战。
- 大功率白光LED驱动电源设计方案(02-18)
- RS485通信可靠性设计需注意的几个问题(03-07)
- 单片机应用系统的可靠性设计(02-13)