设计中的供电系统及接地方式
1 低压供电系统的组成、特点、类型
(1)供电系统通常由交流分系统、直流分系统两部分组成
交流分系统通常由高压和低压两部分组成。
直流分系统通常由交Z直流变换部分、蓄电池组部分组成。负载部分由低压交流负载、直流负载设备组成。"负载"通俗地讲也就是"用电设备"。
(2)低压供电系统的基本特点
①并联冗余方式是提高可靠性的主要方式,无论是交流供电系统,还是直流供电系统。
②一次电源对于低压供电系统来讲,主要是市电或发电,是低压供电系统的核心,是供电系统可靠性的关键。其它电压变换型电源对其有依赖性。直流供电系统依靠交流供电系统提供电源。但直流供电系统可以对交流供电系统做适当的补充。
③不间断电源(UPS)广泛应用,对负载的可靠供电有极为重要的作用。
④应用自动切换(ATS)技术控制负载。
(3)G代电源低压供电系统类型
常见的各种低压交流(220/380V,50Hz)供电系统有:IT、TN一C、TN一S、TN一C一S、TT供电系统。
供电的安全性指供电配电时不能伤害人或损坏设备。可靠性指在一定条件和时间内连续供电的能力。这是电源系统中的一对矛盾,当人身与设备安全性受到危险时,需要切断电源;而切断电源又对用电设备连续供电产生影响。以下对供电系统常用的五种交流电源系统及接地方式进行介绍,并在安全性与可靠性分析进行比较。
2 IT供电系统及接地方式
IT系统是三相三线式供电及接地系统,该系统变压器(或发电机组三相输出)中性点不接地或经高阻抗接地,无中性线(俗称零线)N,只有线电压(380V),无相电压(220V),电器设备保护接地线(PE线)各自独立接地力口图士所示。图中电容C1、C2、C3为供电线路对地的分市电容。
IT系统在供电距离不长时,供电可靠性高,安全性好。电源侧也可采取中性点经高阻抗接地。
IT系统在一相接地时,单相对地漏电电流小,不破坏电源的电压平衡。一般用于不允许停电的场所,或是严格要求连续供电的地方。
如果一相发生接地故障,通过熔断器F等可以切断该相,其它两相可以供电。而且,用电设备有接地保护,当单相绝缘损坏碰到外壳,使金属外壳呈带电状态时,人员触及带电金属外壳可以避免触电事故的发生。这是因为电流经过两条并联电路流通,一路通过接地线、大地,另一路是通过人体、大地。由于接地电阻(要求不超过4Ω,最大不超过10Ω)比人体电阻(最小l000Ω)小得多,所以大部分电流通过接地体入地,只有很小部分电流通过人体,即通过人体的电流不超过人体安全电流,从而保护了设备和人员安全。
此时中性点漂移,另外两相对地电压将升高为380V,也就是说,另外两相原来对地电压为220V,一相接地故障发生时,另外两相对地电压升高为380V。但各相间电压(线电压)仍然对称平衡,因此,三相用电设备仍可以继续运行。为防止非接地相再有一相发生接地,造成两相短路,所以规程规定单相接地时继续运行时间不得超过2小时。如果不及时排除故障,绝缘设施长时间承受过高电压将导致事故。
当中性点不接地系统单相接地电流超过规定值时,为了避免产生断续电弧,避免引起过电压或造成短路,减小接地电弧电流并使电弧容易熄灭,中性点应经消弧线圈接地。消弧线圈实际上就是电抗线圈。
假设,C相对地短路,由于中性点接地电抗的存在,感性对抗电流滞后90。,而线路分布电容电流超前90°,从而有效减小了短路电流的电弧,如图2所示。
TT供电系统由于没有配中性线N,不适台于有单相用电的通信设备。这种设备只适合有特殊要求的场所,如电力炼钢、重要的手术室、重要的实验室、地下矿井或坑道指挥所、重要通信枢纽特定设备等,该供电系统对用电设备的耐压要求较高。
另外,中性点直接接地的情况又是怎样的呢?
中性点直接接地系统发生单相接地时,通过接地中性点形成单相短路,产生很大的短路电流,保护单元动作切除故障线路,使系统的其他部分正常运行。
由于中性点直接接地,发生单相接地时,中性点对地电压为零,非接地的相对地电压不发生变化。
3 TN-C供电系统及接地方式
TN系统的电源中性点直接接地,拜引出有中性线N线、保护线PE线或保护中性线PEN线,属于三相四线制系统。
如果系统中N线与PE线金部合为PEN线,则系统称为TN一C系统。
如果系统中N线与PE线全部分开,则系统称为TN一S系统。
如果系统中前一部分N线与PE线合为PEN线,而后一部分N线与PE线全部分开则称为TN一C一S系统。
TN系统中设备发生单相碰壳漏电故障时,会形成单相短路回路,因该回路内不包含任
- 通信UPS供电系统合理化配置的探讨(04-18)
- UPS供电系统设计技术探讨(07-03)
- 关于数据中心供电系统省去工频隔离变压器的探讨(07-13)
- UPS供电系统与发电机组的匹配兼容性(10-23)
- 传统UPS在数据中心供电系统中的应用(06-19)
- UPS供电系统的改造(09-11)