超级电容器在电动汽车上的应用
类型的传统汽车相比尾气排放可减少50%70%,降低燃油消耗30%以上,能够满足日益严格的环保要求,既有电动车的节能和低排放的特点,又具有燃油汽车的方便性能Il21。混合动力源电动车按照能量合成的形式主要分为串联式(SeriesHybridElectricVehicle,SHEV)和并联式,PHEV)两种。在串联式混合动力系统中,由发动机驱动发电机,利用发出的电能由电动机驱动车轮。即发动机所发出的动能全部要先转换成电能,利用这一电能使车辆行驶。并联式混合动力系统采用的是发动机与电动机驱动车轮,根据情况来运用这两个动力源,由于动力源是并行的,故称为并联式混合动力系统。此外,还存在混联式,也称串并联式,它可以最大限度地发挥串联式与并联式的各自优点。
就目前所制造的混合电动车来看,它的动力系统是以燃油发动机作为主要动力,其电力能量贮藏系统通常是二次电源,而目前所应用的二次电源存在很多的缺点有待大幅度改进,而这些问题都可以用超级电容器代替解决,在内燃机车的电起动系统中采用超大容量电容器辅助起动装置,显示了较突出的优势,其表现在:
1.由于起动功率的增加,缩短了柴油一发电机组的起动时间。柴油机旋转加速度增加,提高了燃油点燃质量。
2.降低了起动时蓄电池组的最大电流负荷,有助于延长蓄电池的使用寿命。
3.确保了起动的可靠性,特别是在低温以及蓄电池组亏电或参数变坏时尤为明显。
4.在现有蓄电池技术状况下,可以有效减小蓄电池容量。
但超级电容器并不能完全取代电池,因为它的能量密度比较低。超级电容器单体的工作电压较低,因此要通过多个电容器单体的串联才能得到较高的工作电压,而多个单体串联对单体的统一性要求比较高,且串联起来后体系的容量又会成倍减少。现在这方面的很多工艺都还在研发当中。
超级电容的特性正好满足混合动力电动汽车的特殊要求。利用超级电容瞬时高功率特性,避免了要求发动机频繁起动和蓄电池提供瞬间大功率的特殊要求,同时还可以对制动能量进行回收利用,从而可以节约能源、减少排放污染,尤其适合经常在城市行驶的混合动力电动汽车。在回收制动能量方面,汽车在行驶过程中至少有30%的能量因热量散发和制动而消耗掉,特别是在城市行驶,经常遇到红灯,这样不仅造成能源浪费,而且增加环境污染。
如能把制动所消耗的能量回收起来用于汽车起动、加速,可谓一举两得。由于蓄电池充电是通过化学反应来完成的,所需时间较长,但制动时间较短,因而回收能量效果不佳。现正处于研究中的飞轮电池,由于精度要求高、制作难度大,短时间还难以进入实用阶段。超级电容独有的特性非常适合用于制动过程中能量回收,而且成本较低,应用前景广阔。
在为发动机冷起动时提供瞬时大功率方面,发动机的冷起动对蓄电池提出了特殊的要求,蓄电池必须提供瞬间大功率,发动机才可能起动。然而,一般蓄电池不具备这种特性,除非用起动点火型电池,但是起动点火型电池并不适合长时期小电流工作环境,而且在低温下经常失效,因此也不适合。
研究发现,如果把超级电容和蓄电池联合用在发动机起动系统,发挥超级电容的独有特性,构成新型的起动系统,这个问题就可迎刃而解了。
超级电容器作为一种新型储能元件,其出现填补了传统静电电容器和化学电源之间的空白,凭借着低成本高性能的优势,加上对环境的无污染使得人们对它越来越重视。随之对电动汽车研究的深入,超级电容器在这方面应用的优势也越来越明显。超级电容器的高性能决定了其市场前景非常广阔,而低成本又决定了其显著的经济效益。虽然超级电容器存在着比容量偏低的缺陷,但相信通过改进,一定会推动汽车行业发生质的飞跃。
- LT3751如何使高压电容器充电变得简单(08-12)
- 2A超级电容器充电器平衡和保护便携式应用中的超级电容器(11-01)
- 电容器与声音的关系(11-04)
- 就备份应用而言,超级电容器可能是优于电池的选择(03-05)
- 自举电源转换器中输入电容器的设计考虑因素(05-03)
- 与基于电感器的开关稳压器相比, 高压充电泵可简化电源转换(03-03)