高功率QCW半导体阵列的可靠性研究
,这些器件在测试之前就烧在样品上。驱动样品的电流源为 NGCEO eDrive 激光控制器。寿命测试平台在每隔90分钟(大概400百万的发射次数)对每个器件的输出功率进行测量的,数据以对数形式储存的。图3,展示了测试结果。15个四条样品中的三个样品,由于遭遇到毁灭性的破坏(所有这三个都没能发射800万次),因此这三个样品的测量数据不包括在展示的图3中。因为在生产阵列过程中的初期致命性德样品被排除在外了,所以数据展现了NGCEO器件的期望表现。
图3:单条(上)和四条(下)Golden BulletTM工作电流为110A的寿命测试数据
在2009 年12月份后半月,样品已经采集了将近91亿发射次数的时间。二极管巴条都未经受COD(排除初期的致命伤),所有的样品都是缓慢衰老的。四条样品的退化率更慢。因为样品代表了四根巴条的平均退化率,所有高的退化率巴条与低的退化率巴条,相互之间会抵消掉。
4. 可靠性分析
在激光二极管工业中,关于器件失效有好几种定义。出乎这份分析的目的,在恒定的驱动电流下,器件的功率衰减了20%以上,即可定义为器件失效。因为大多数样品在截止在文章提交时并未失效,一种可接受的外延方法应用于这份分析。大部分的退化率与时间都呈现线性关系。因此,在最后30亿发射次数的退化率用于拟合,拟合得到的公式,用于确定每个样品的失效时间点(TTF)。
利用统计分析软件(MinitabTM),对TTF数据进行分析。数据用四种分布(威布尔,基底为e的对数正态,指数分布,正态分布)公式在图中画出来。用以确定哪种分布,与实验数据更符合。选择基底为e的对数正态分析单条和四条样品的性质分析。图4展示了最后的到的可靠性曲线,曲线至于95%的置信区间。计算得到的MTTF值为:单条样品---198亿次,四条样品---146亿次。NGCEO仍然在延续这个测试实验,用于验证实际的失效时间是否与外延法得到的数据相符合。
图4, 单条(上)和四条(下)QCW Golden BulletTM工作电流为110A的可靠线曲线
5. PowerPULSETM激光增益模块
NGCEO利用自身的高功率QCW二极管阵列技术和激光增益模块生产线创造了PowerPULSETM 系列激光增益模块。这些增益模块包含高寿命的QCW阵列(激光棒:Nd:YAG, Nd:YLF, Nd:YVO4),能够产生高于1焦耳的脉冲能量。PowerPULSETM 激光增益模块的样品如图5所示。
图5,PowerPULSETM 激光增益模块
这些模块包含高寿命的QCW激光二极管阵列和一个激光棒。
PowerPULSETM 激光增益模块用于包括多种热交换器的高能系统中,每个模块中都包含多根巴条的QCW阵列,与上面寿命测试所用的四条样品相类似。这些模块典型的包含20 – 200 QCW激光二极管巴条不等。因此,讲四条样品阵列作为一个单独的主题,进行分析会很有趣。因为,这个代表在一个PowerPULSETM 激光增益模块中的激光二极管阵列。通过把在图3中,各个点的不同功率值相加,然后外延这些结果。我们得到图6所示的结果:
图6. 从图3中获得的所有4巴条样品的总得测量输出功率
以上数据是91亿次之前的数据室测量值,超过91亿次的数据是外延得到的。
如果讲输出功率衰减了20%作为衡量失效时间的话,我们从图6,可以看出在一个典型的PowerPULSETM 激光增益模块中的QCW阵列的失效时间大概为135亿次发射次数。值得指出的是,这些阵列是为了可靠运行在相当高的输出功率而设计。因此,为了获得更长的使用寿命,随着衰减的增加,我们可以适当的提高驱动电流值。
产品运行寿命与重复率之间的曲线关系在图7中给出。这些数据是基于135亿次产品寿命(图6,分析四条Golden BulletTM的寿命),并且假设是连续运行(24小时/天,7天/周)的情况下给出的。因此,这个图可以作为PowerPULSETM 激光增益模块的使用指导。例如,在重复率为100Hz,数据给出的模块寿命时间为1500天。在所有的重复率小于370Hz的情况下,产品的预期寿命到高于416天(10000小时)。
图7,多条Golden BulletTM QCW激光二极管阵列组装体寿命与重复率的曲线关系图
这是PowerPULSETM 激光增益模块生产线的代表曲线图
6. 结论
Northrop Grumman Cutting Edge Optronics 基于自身的Golden BulletTM封装技术以及高功率的QCW激光二极管条巴,发展了一系列的QCW激光二极管阵列产品。这些产品的代表性样品经过了寿命测试,也表明了具有高寿命(单条的MTTF值为198亿次,四条的MTTF值为146亿次)。在整个寿命测试过程中,所有的样品都没有发生突变,都是缓慢退化的。
NGCEO利用成功的高寿命QCW二极管阵列技术创造了QCW泵
- 高功率密度、双通道 8A μModule 稳压器(01-10)
- 高功率密度高频电源变压器的应用(06-17)
- 采用纤巧 QFN 封装的 42V 高功率密度降压型稳压器(03-06)
- 浅谈如何执行高功率因数的LED驱动器设计(07-26)
- 高功率LED室内照明的灯具技术解析(09-30)
- 电子变压器在电源技术中的作用(10-26)