逆变电源数字控制技术的应用
1逆变电源数字控制技术的发展
1.1高性能逆变电源与数字控制技术
随着网络技术的发展,对逆变电源的网络功能提出了更高的要求,高性能的逆变电源必须满足:高输入功率因数,低输出阻抗;暂态响应快速,稳态精度高;稳定性高,效率高,可靠性高;电磁干扰低;网络功能完善。要实现这些功能,离不开数字控制技术。1.2传统逆变电源控制技术
1.2.1传统逆变电源控制技术的缺点
传统的逆变电源多为模拟控制或者模拟与数字相结合的控制系统。虽然模拟控制技术已经非常成熟,但其存在很多固有的缺点:控制电路的元器件比较多,电路复杂,所占的体积较大;灵活性不够,硬件电路设计好了,控制策略就无法改变;调试不方便,由于所采用器件特性的差异,致使电源一致性差,且模拟器件的工作点的漂移,导致系统参数的漂移。模拟方式很难实现逆变电源的并联,所以逆变电源数字化控制是发展的趋势,是现代逆变电源研究的一个热点。
1.2.2传统逆变电源控制技术的改进
以前为了改善系统的控制性能,通过模拟、数字(A/D)转换器,将微处理器与系统相连,在微处理器中实现数字控制算法,然后通过输入、输出口或脉宽调制口(pulse width modulation, PWM)发出开关控制信号。微处理器还能将采集的功率变换装置工作数据,显示或传送至计算机保存。一些控制中所用到的参考值可以存储在微处理器的存储器中,并对电路进行实时监控。
微处理器的使用在很大程度上提高了电路系统的性能,但由于微处理器运算速度的限制,在许多情况下,这种微处理器辅助的电路控制系统仍旧要用到运算放大器等模拟控制元件。近年来随着大规模集成电路、现代可编程逻辑器件及数字信号处理器(digital signal processor,SP)技术的发展,使逆变电源的全数字控制成为现实。SP能够实时地读取逆变电源的输出,并实时地计算出PWM输出值,使得一些先进的控制策略应用于逆变电源控制成为可能,从而可对非线性负载动态变化时产生的谐波进行动态补偿,将输出谐波达到可以接受的水平。2逆变电源数字化控制技术的现状2.1逆变电源控制技术数字化、智能化、网络化 随着电机控制专用SP的出现及其控制理论的普遍发展,逆变电源控制技术朝着全数字化、智能化及网络化的方向发展,逆变电源的数字控制技术发生了一次大飞跃。逆变电源数字化控制的优点在于各种控制策略硬件电路基本是一致的,要实现各种控制策略,无需变动硬件电路,只需修改软件即可,大大缩短了开发周期,而且可以应用一些新型的复杂控制策略,各电源之间的一致性很好,这样为逆变电源的进一步发展提供了基础,而且易组成可靠性高的大规模逆变电源并联运行系统。
2.2逆变电源数字化发展存在的难点
数字化是逆变电源发展的主要方向,但还是需要解决以下一些难题:
a)逆变电源输出要跟踪的是一个按正弦规律变化的给定信号,它不同于一般开关电源的常值控制。在闭环控制下,给定信号与反馈信号的时间差就体现为明显的相位差,这种相位差与负载是相关的,这就给控制器的设计带来了困难。
1逆变电源数字控制技术的发展
1.1高性能逆变电源与数字控制技术
随着网络技术的发展,对逆变电源的网络功能提出了更高的要求,高性能的逆变电源必须满足:高输入功率因数,低输出阻抗;暂态响应快速,稳态精度高;稳定性高,效率高,可靠性高;电磁干扰低;网络功能完善。要实现这些功能,离不开数字控制技术。1.2传统逆变电源控制技术
1.2.1传统逆变电源控制技术的缺点
传统的逆变电源多为模拟控制或者模拟与数字相结合的控制系统。虽然模拟控制技术已经非常成熟,但其存在很多固有的缺点:控制电路的元器件比较多,电路复杂,所占的体积较大;灵活性不够,硬件电路设计好了,控制策略就无法改变;调试不方便,由于所采用器件特性的差异,致使电源一致性差,且模拟器件的工作点的漂移,导致系统参数的漂移。模拟方式很难实现逆变电源的并联,所以逆变电源数字化控制是发展的趋势,是现代逆变电源研究的一个热点。
1.2.2传统逆变电源控制技术的改进
以前为了改善系统的控制性能,通过模拟、数字(A/D)转换器,将微处理器与系统相连,在微处理器中实现数字控制算法,然后通过输入、输出口或脉宽调制口(pulse width modulation, PWM)发出开关控制信号。微处理器还能将采集的功率变换装置工作数据,显示或传送至计算机保存。一些控制中所用到的参考值可以存储在微处理器的存储器中,并对电路进行实时监控。
微处理器的使用在很大程度上提高了电路系统的性能,但由于微
- 电力逆变电源的应用实例(04-26)
- 基于DSP生成SVPWM在逆变电源中的应用(11-09)
- 正弦波输出逆变电源的设计(07-12)
- 功率稳压逆变电源的设计与制作(09-28)
- 高频逆变电源的保护与驱动电路的设计(06-26)
- 电力逆变电源的基础应用(07-05)