数字控制在电源应用中的特性、价值和优势
这一输出电压也是第二级的输入,因此该数据也被第二级用作前馈控制或者输入过压/ 欠压保护。
单独一个DSC消除了相同参数的重复测量,并可从内部提供不同控制或保护特性的所有选项。DSC也有助于系统对故障状态作出比分立模拟控制器更快速、更高效的反应。例如,在一个两级AC-DC 模拟电源中,如果故障出现在下级转换器中,除非这个故障状况已经被传送给PFC 控制器,否则前端PFC 升压转换器将无法识别这个故障。而数字控制器能检测到整个系统的故障状态,无论故障发生在何处,几乎都能在瞬间作出反应。
软启动以及模拟和数字电源的时序
当电源刚启动时,各种存储元件,如电容和电感,都处于零储能状态。在这样的状况下,电源突然升压会引起系统很大的浪涌电压和浪涌电流。因此,电源的所有阶段都必须使用软启动来确保系统元件避免受到不必要的压力。
许多(并非全部)模拟控制器都带有内置软启动功能。
模拟控制器在选择软启动持续时间时都只提供有限的灵活性,且需额外电路来实现启动延时。
在多级电源中,由于一些输出取决于其他输出,因此有必要通过预定义方式对输出顺序进行控制。这可由单独的时序芯片完成,或者使用后台单片机以及辅助电路来实现。
由于所有时序控制和软启动子程序都可作为电源控制软件的一部分来完成,因此数字电源不需要外加硬件。电源的每一级都可实现一个软启动子程序,每个都具有不同的持续时间和延时。典型的软启动子程序如例1 中的C 代码片段所示。
void PFCSoftStartRoutine()
{
Delay_ms(STARTUP_DELAY)
pfcVoltagePID.controlReference = pfcInitialOutputVoltage;
while (pfcVoltagePID.controlReference <= PFCVOLTAGE_REFERENCE)
{
Delay_ms(SOFTSTART_INCREMENT_DELAY);
pfcVoltagePID.controlReference += PFC_SOFTSTART_INCREMENT;
}
pfcVoltagePID.controlReference = PFCVOLTAGE_REFERENCE;
}
在例1 中,dsPIC DSC 初始化之后就立刻调用软启动子程序。首先调用启动延时,随后输出电压参考将被设定为实际测量的输出电压。参考值一直以固定速率上升,直到其达到期望值为止。此时,软启动结束,系统正常运行开始。数字控制器可灵活使用软启动子程序。相同的子程序在不同时间阶段可通过不同参数进行调用。例如,如果系统要在故障发生后重启,启动延时和软启动持续时间可修改为不同的值。
时序控制可在不外加任何电路的情况下,通过一些灵活的配置加以实现。图6 中显示了一些时序机制原理图。
传统开关电源(Switch Mode Power Supply,SMPS)控制通常使用纯模拟技术。低成本和高性能数字信号控制器(Digital Signal Controller, DSC)的出现开启了开关电源控制的全新境界,并且标志着电源产业正朝着数字革命的方向发展。
本白皮书强调,当前是电源应用采用数字技术、实现数字电源的最佳时机。Microchip 提供的AC-DC 参考设计就是展示数字控制技术优点的极佳实例。
本白皮书通过在以下几个方面将数字电源与模拟电源进行定量比较以指出数字电源的优势所在:
●比较模拟电源与数字电源的物料成本
●控制先进拓扑结构的能力和数字控制的灵活性
●在同样成本条件下,数字电源实现的附加价值数字电源节省成本。
图1 为两级模拟AC-DC 电源的高阶原理框图。
图 1: 两级模拟AC-DC 电源
图2 显示了数字AC-DC 电源的高阶框图。
图 2: 数字AC-DC 电源
模拟电源的主要组成包括:
●功率链:半导体开关、电感、电容和功率变压器
●驱动电路:栅极驱动以及支持电路
●反馈电路:传感器、放大器和电阻网络
●控制器:每个功率级专用控制器
●后台管理电路:用于顺序控制、监控和通信的专用单片机以及支持电路
为便于比较,考虑选择一个两级式电源。前端转换器采用升压功率因数校正(Power Factor Correction,PFC)电路,而第二级是DC-DC 相移式全桥转换器。
模拟电源与数字电源的功率链部分、驱动电路和反馈电路保持一致。图2 分别展示了上述例子中所描述的数字电源。对于数字控制电源,专用模拟控制器和后台管理电路可合并采用一片dsPIC®DSC 来实现。
图1和图2仅从较高层次展示了两者的主要差别;然而,在进行对比时所有支持电路也需包括在内。图3 所示为每个模拟级中的支持电路,而图4 则为数字系统中的支持电路。注意模拟控制器所需要的额外连接(在图3 和图4 中用箭头标出)。
高级特性
效率优化
对
- 数字控制的开关电源设计(09-16)
- 利用数字控制技术优化电源系统设计(09-22)
- 数字控制UPS电源技术及应用(03-29)
- 逆变电源数字控制技术的应用(05-26)
- 基于低采样率控制系统的振动抑制设计方案(02-17)
- 如何通过数字控制阀增加空压机的运行时间(11-06)