微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 硬件工程师文库 > 混合集成电路的电磁兼容(EMC)设计

混合集成电路的电磁兼容(EMC)设计

时间:10-07 来源:微计算机信息 点击:

,并远离信号接口和低电平信号芯片。元器件要与基片的一边平行或垂直,尽可能使元器件平行排列,这样不仅会减小元器件之间的分布参数,也符合混合电路的制造工艺,易于生产。

    在混合电路基片上电源和接地的引出焊盘应对称布置,最好均匀地分布许多电源和接地的I/O连接。裸芯片的贴装区连接到最负的电位平面。

    在选用多层混合电路时,电路板的层间安排随着具体电路改变,但一般具有以下特征。

(1)电源和地层分配在内层,可视为屏蔽层,可以很好地抑制电路板上固有的共模RF干扰,减小高频电源的分布阻抗。

(2)板内电源平面和地平面尽量相互邻近,一般地平面在电源平面之上,这样可以利用层间电容作为电源的平滑电容,同时接地平面对电源平面分布的辐射电流起到屏蔽作用。

(3)布线层应尽量安排与电源或地平面相邻以产生通量对消作用。

3.3导线的布局

    在电路设计中,往往只注重提高布线密度,或追求布局均匀,忽视了线路布局对预防干扰的影响,使大量的信号辐射到空间形成干扰,可能会导致更多的电磁兼容问题。因此,良好的布线是决定设计成功的关键。

3.3.1地线的布局

    地线不仅是电路工作的电位参考点,还可以作为信号的低阻抗回路。地线上较常见的干扰就是地环路电流导致的地环路干扰。解决好这一类干扰问题,就等于解决了大部分的电磁兼容问题。地线上的噪音主要对数字电路的地电平造成影响,而数字电路输出低电平时,对地线的噪声更为敏感。地线上的干扰不仅可能引起电路的误动作,还会造成传导和辐射发射。因此,减小这些干扰的重点就在于尽可能地减小地线的阻抗(对于数字电路,减小地线电感尤为重要)。

    地线的布局要注意以下几点:

(1)根据不同的电源电压,数字电路和模拟电路分别设置地线。

(2)公共地线尽可能加粗。在采用多层厚膜工艺时,可专门设置地线面,这样有助于减小环路面积,同时也降低了接受天线的效率。并且可作为信号线的屏蔽体。

(3)应避免梳状地线,这种结构使信号回流环路很大,会增加辐射和敏感度,并且芯片之间的公共阻抗也可能造成电路的误操作。

(4)板上装有多个芯片时,地线上会出现较大的电位差,应把地线设计成封闭环路,提高电路的噪声容限。

(5)同时具有模拟和数字功能的电路板,模拟地和数字地通常是分离的,只在电源处连接。

3.3.2电源线的布局

    一般而言,除直接由电磁辐射引起的干扰外,经由电源线引起的电磁干扰最为常见。因此电源线的布局也很重要,通常应遵守以下规则。

(1)电源线尽可能靠近地线以减小供电环路面积,差模辐射小,有助于减小电路交扰。不同电源的供电环路不要相互重叠。

(2)采用多层工艺时,模拟电源和数字电源分开,避免相互干扰。不要把数字电源与模拟电源重叠放置,否则就会产生耦合电容,破坏分离度。

(3)电源平面与地平面可采用完全介质隔离,频率和速度很高时,应选用低介电常数的介质浆料。电源平面应靠近接地平面,并安排在接地平面之下,对电源平面分布的辐射电流起到屏蔽作用。

(4)芯片的电源引脚和地线引脚之间应进行去耦。去耦电容采用0.01uF的片式电容,应贴近芯片安装,使去耦电容的回路面积尽可能减小。

(5)选用贴片式芯片时,尽量选用电源引脚与地引脚靠得较近的芯片,可以进一步减小去耦电容的供电回路面积,有利于实现电磁兼容。

3.3.3信号线的布局

    用单层薄膜工艺时,一个简便适用的方法是先布好地线,然后将关键信号,如高速时钟信号或敏感电路靠近它们的地回路布置,最后对其它电路布线。信号线的布置最好根据信号的流向顺序安排,使电路板上的信号走向流畅。

    要把EMI减到最小,就让信号线尽量靠近与它构成的回流信号线,使回路面积尽可能小,以免发生辐射干扰。低电平信号通道不能靠近高电平信号通道和无滤波的电源线,对噪声敏感的布线不要与大电流、高速开关线平行。如果可能,把所有关键走线都布置成带状线。不相容的信号线(数字与模拟、高速与低速、大电流与小电流、高电压与低电压等)应相互远离,不要平行走线。信号间的串扰对相邻平行走线的长度和走线间距极其敏感,所以尽量使高速信号线与其它平行信号线间距拉大且平行长度缩小。

    的电感与其长度和长度的对数成正比,与其宽度的对数成反比。因此,导带要尽可能短,同一元件的各条地址线或数据线尽可能保持长度一致,作为电路输入输出的导线尽量避免相邻平行,最好在之间加接地线,可有效抑制串扰。低速信号的布线密度可以相对大些,高速信号的布线密度应尽

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top