微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 硬件工程师文库 > 严酷的汽车环境要求高性能电源转换

严酷的汽车环境要求高性能电源转换

时间:08-17 来源: 点击:

反向。就在电感器电流达到零之前的瞬间,反向电流比较器 IR 关断底部的外部 MOSFET,以防止它变为负值。因此,当配置为突发模式时,控制器还以断续模式工作。

另外,在强制连续工作时或由一个外部时钟源提供时钟信号时,电感器电流在轻负载或大瞬态条件下允许反向。连续工作具有较低输出电压纹波的优势,但产生较高的静态电流。


过流保护

在高压电源中,快速准确的限流保护很重要。因为在输出短路时,电感器两端的电压很高,所以电感器可能快速饱和,从而引起过大的电流流过。LTC3890/-1 提供以下选择:利用与输出串联的检测电阻器检测输出电流;或者用输出电感器两端的压降检测输出电流。无论用哪种方式,输出电流都被连续监视,并提供最高级别的保护。一些可替代的设计也许利用顶部或底部 MOSFET 的 RDS(ON) 来检测输出电流。然而,这在开关周期内导致一个控制器"看不见"输出电流是多少的时间段,而且可能引起转换器故障。


强大的栅极驱动器

开关损耗与输入电压的平方成正比,而且这些损耗在栅极驱动器不够好的高输入电压应用中可能最为突出。LTC3890/-1 有强大的 1.1Ω 内置 N 沟道 MOSFET 栅极驱动器,该驱动器最大限度地减少了转换时间和开关损耗,从而最大限度地提高了效率。此外,它还能为更高电流的应用驱动多个并联的 MOSFET。


效率

图 2 所示的 LTC3890 效率曲线是具 12V 输入电压的图 1 原理图的示例。如图所示,8.5V 输出可产生高达 98% 非常高的效率,。3.3V 时效率也超过 90%。此外,这个设计在每路输出具 1mA 负载时,效率仍然超过 75%,这是由于突发模式工作。

图 2:LTC3890 的 12V 输入至 8.5V 和 3.3V 输出效率曲线
Efficiency vs Load Current:效率与负载电流


快速瞬态响应

LTC3890 利用以快速 25MHz 带宽工作的放大器实现电压反馈。高带宽放大器结合高开关频率和低值电感器,允许非常高增益的交叉频率。这允许补偿网络为实现非常快的负载瞬态响应而优化。图 3 说明了在 3.3V 输出上 4A 阶跃负载的瞬态响应,与标称值有不到 100mV 的偏离。

图 3:4A 负载阶跃时 LTC3890 的瞬态响应曲线
Load Step:负载阶跃
Forced Continuous Mode:强制连续模式
2A/div:每格 2A


结论

LTC3890 提供了使其非常适用于高输入电压电源的功能。就需要在严酷的高压瞬态环境中安全和高效率地工作而言,它提供了更高的性能水平。包括 60V 输入能力在内的多种特色使其非常适用于汽车双电池、卡车和重型设备应用。其低静态电流在休眠模式节省电池能量,从而允许更长的电池运行时间,这在"始终保持接通"总线系统中是非常有用的功能。

此外,LTC3890 具高达 24V 的输出电压,还非常容易用来产生多种输出电压。或者,其小的最短接通时间使 LTC3890 能用在高降压比应用中。直接从 60V 降低输入电压而无需笨重的变压器或外部保护能力,使形成经济实惠和紧凑的解决方案成为可能。
 

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top