微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 嵌入式设计 > CCITT CRC-16计算原理与实现

CCITT CRC-16计算原理与实现

时间:07-23 来源: 点击:

CRC的全称为Cyclic Redundancy Check,中文名称为循环冗余校验。它是一类重要的线性分组码,编码和解码方法简单,检错和纠错能力强,在通信领域广泛地用于实现差错控制。实际上,除 数据通信外,CRC在其它很多领域也是大有用武之地的。例如我们读软盘上的文件,以及解压一个ZIP文件时,偶尔会碰到"Bad CRC"错误,由此它在数据存储方面的应用可略见一斑。

差错控制理论是在代数理论基础上建立起来的。这里我们着眼于介绍CRC的算法与实现,对原理只能捎带说明一下。若需要进一步了解线性码、分组码、循环码、纠错编码等方面的原理,可以阅读有关资料。

利用CRC进行检错的过程可简单描述为:在发送端根据要传送的k位二进制码序列,以一定的规则产生一个校验用的r位监督 码(CRC码),附在原始信息后边,构成一个新的二进制码序列数共k+r位,然后发送出去。在接收端,根据信息码和CRC码之间所遵循的规则进行检验,以 确定传送中是否出错。这个规则,在差错控制理论中称为"生成多项式"。 

1 代数学的一般性算法

在代数编码理论中,将一个码组表示为一个多项式,码组中各码元当作多项式的系数。例如 1100101 表示为
1·x6+1·x5+0·x4+0·x3+1·x2+0·x+1,即 x6+x5+x2+1。

设编码前的原始信息多项式为P(x),P(x)的最高幂次加1等于k;生成多项式为G(x),G(x)的最高幂次等于r;CRC多项式为R(x);编码后的带CRC的信息多项式为T(x)。

发送方编码方法:将P(x)乘以xr(即对应的二进制码序列左移r位),再除以G(x),所得余式即为R(x)。用公式表示为
T(x)=xrP(x)+R(x)

接收方解码方法:将T(x)除以G(x),如果余数为0,则说明传输中无错误发生,否则说明传输有误。

举例来说,设信息码为1100,生成多项式为1011,即P(x)=x3+x2,G(x)=x3+x+1,计算CRC的过程为

xrP(x) x3(x3+x2) x6+x5 x
-------- = ---------- = -------- = (x3+x2+x) + --------
G(x) x3+x+1 x3+x+1 x3+x+1
即 R(x)=x。注意到G(x)最高幂次r=3,得出CRC为010。

如果用竖式除法,计算过程为

1110
-------
1011 /1100000 (1100左移3位)
1011
----
1110
1011
-----
1010
1011
-----
0010
0000
----
010
因此,T(x)=(x6+x5)+(x)=x6+x5+x, 即 1100000+010=1100010

如果传输无误,

T(x) x6+x5+x
------ = --------- = x3+x2+x,
G(x) x3+x+1
无余式。回头看一下上面的竖式除法,如果被除数是1100010,显然在商第三个1时,就能除尽。

上述推算过程,有助于我们理解CRC的概念。但直接编程来实现上面的算法,不仅繁琐,效率也不高。实际上在工程中不会直接这样去计算和验证CRC。

下表中列出了一些见于标准的CRC资料:

名称

生成多项式

简记式*

应用举例

CRC-4

x4+x+1

ITU G.704

CRC-12

x12+x11+x3+x+1

CRC-16

x16+x12+x2+1

1005

IBM SDLC

CRC-ITU**

x16+x12+x5+1

1021

ISO HDLC, ITU X.25, V.34/V.41/V.42, PPP-FCS

CRC-32

x32+x26+x23+...+x2+x+1

04C11DB7

ZIP, RAR, IEEE 802 LAN/FDDI, IEEE 1394, PPP-FCS

CRC-32c

x32+x28+x27+...+x8+x6+1

1EDC6F41

SCTP

* 生成多项式的最高幂次项系数是

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top