大规模MIMO的原型制作 Prototyping Massive MIMO
对无线数据的无线需求不断促使研发人员寻找新的技术来扩大无线数据容量和网络能力。业界专家们普遍认为,即使当前和规划中的基础设施全面展开,数据需求仍然会继续超过现有的能力,辩论已经从这"是否"会发生转为"何时"发生。无线服务提供商纷纷计划将网络升级到4G LTE、LTEAdvanced(LTE-A),以及更先进的技术,推出微蜂窝覆盖、异构网络、载波聚合、3GPP路线图等创新方案。然而很明显,当前技术轨迹产生的容量斜坡仍然比需求线平坦。面对此挑战,3GPP 标准实体近来提出了数据容量"到2020 年增长1000 倍"的目标,以满足演进性或革命性创意的需要。
这种概念要求基站部署极大规模的天线阵列,可能包含成百上千的收发器。此概念称为大规模MIMO。的确,大规模MIMO 脱离了当前的网络拓补,可能是解决我们所面对的无线数据挑战的关键;然而,在认知大规模MIMO 广泛部署的效能和/ 或可行性的过程中,出现了一个值得关注的问题,有人会创建一个原型,只为确定它是否真正行之有效吗?毕竟,创建一个具有上千天线的原型会带来若干工程上的挑战,另外还有其他不可忽视的问题,即成本和时间。
图1. 2 天线MIMO 收发器。
MIMO背景
MIMO 依赖多路来提高无线数据链路的可靠性以及有效数据率,通常使用数根独立天线获得多个数据流。多路传播是通信系统面临的巨大挑战,实践中采用MIMO,运用空间- 时间编码和/ 或空间分集等多种技术。4G 移动通信标准LTE-A 规定MIMO 组态最多使用8 根天线。IEEE 802.11n/ac 标准以及这些标准的实际商业化均普遍使用MIMO。
基本上,更多天线会给传播通道带来更高的自由度,从而在数据率和/ 或链路可靠性方面拥有更高的性能。然而,总体数据率仍然受到香农理论的限制。在多个用户组成的网络中,增大总体网络吞吐量的一种方法是多用户MIMO(MU-MIMO),其中,多个用户可以同时访问同一时频资源,但是通过多根天线产生的多"空间维度"实现隔离。
更多天线,更大容量,更高的可靠性
增大MU-MIMO 的规模, 称为大规模MIMO,可以提供更大的网络容量、更高的可靠性,并通过降低一个蜂窝或服务地区的总发射功率而提高大规模MIMO 基站的能量效率。理论上,每根天线的发射功率能够低于以相同数据率为指定蜂窝或者地区服务的单根天线的发射功率。即,总功率为:
PTotMM ~ PT NT
其中,PTotMM 是每个地区的总传输功率,PT 是每根天线的功率,NT 是发射天线的数目。其中,PTotMM 低于单天线系统的PTot。与单天线系统相比,为了达到相同的可靠性和/ 或吞吐量,由于大规模MIMO 基站能够凭借其更高的自由度而将发射的能量聚焦于目标用户,所以大规模MIMO 蜂窝拓补能够降低分区地域的总发射功率。另外,当使用多根天线时,从发射器至接收器的正确位发射概率会增大,因为链路中断概率~ 1 / SNR NT NR。
其中,SNR 是信噪比,NR 是接收天线的数目,NT 是发射天线的数目。由于此关系,当系统中的天线数目增加时,链路中断概率会降低,从而提高了通信链路可靠性。[1]
大规模MIMO 天线阵列基于这里所述的基本概念,按照理论,数百倍规模的天线部署将获得比当前MIMO 点对点部署更高的效率。具体来说,凭借数百根天线,天线孔径和部署网格均有精细的多的分辨率。配合波束成形,能够更加精细地控制天线波瓣,以降低通道中的能量。
大规模MIMO 系统也有其挑战。一个挑战是寻找从接收器到发射器的通道状态信息通信方法,以进行预编码。鉴于有数百根天线,通过导频信号来推论通道状态在实践中是不可行的。因此,目前实现的大规模MIMO只能实际使用依赖于通道互易的时分双工(TDD)系统,然而要确定此方法的可行性,还需要进行更多研究。另外,一些初步研究提出,系统中的热噪声对于如此之多的天线来说不必过于关注,并且干扰器的影响成为更大的问题。这些挑战以及其他挑战,可以在开发出有效的原型之后使用实际波形来进行研究。
2. M 用户N 天线大规模MIMO 系统。
图3. 典型1x1 软件定义无线电体系结构。
大规模MIMO系统的原型制作
制作大规模MIMO 系统的原型需要预先进行许多工作,以便仔细、恰当地设计实际运作系统。大多数研究人员会发现,甚至制作只有2 天线的最低组态MIMO 收发器系统也是极具挑战性的(参见图1)。为设计大规模MIMO 原型,首先绘制系统草图(参见图2)。在本练习中,基站处的天线数目N 为128,从而获得128×128 MIMO 组态。组态假设M个移动用户使用SISO 天线。
在设计大规模MIMO 系统时,需要考虑许多事项,包括发射功率、相邻通道干扰、频谱罩等RF 系统参数。然而,
MIMO 相关文章:
- 4G系统中多天线技术(03-14)
- MIMO天线各种技术分析(06-17)
- 室内分布MIMO天线的研究及展望(10-06)
- 4G中的MIMO智能天线技术(11-03)
- 新MIMO架构天线方案 助Wi-Fi、LTE提速(05-29)
- 解析Massive MIMO大规模天线原理及实现2.61Gbps 峰值速率(06-13)