微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 嵌入式设计 > 基于C8051F131设计的RFID阅读器的信号处理电路设计

基于C8051F131设计的RFID阅读器的信号处理电路设计

时间:08-24 来源:互联网 点击:

0 引言

 基于SAW(Surface Acoustic Wave)标签的RFID系统采用了先进微电子加工技术制造的SAW器件,具有体积小、重量轻、批量成本低、可靠性高、识别距离远、多功能等优点,与基于IC标签的RFID系统有很好的互补性,尤其在基于IC标签的RFID系统应用于带有金属物体、高温、强电磁干扰等恶劣环境无能为力时,基于SAW标签的RFID系统就显示了它的优越性,同时SAW标签也适甩干压力、加速度、温度等参数的测量,此技术在欧美已得到一定的应用。在我国,此方面的研究近几年才开始展开,技术还不够成熟。

本文将介绍一种SAW RFID阅读器的信号处理电路设计及其软件设计。

1 阅读器的系统分析

阅读器采用模块化设计,最基本单元的为射频电路与信号处理电路。如图1所示,射频系统包括发射电路与接收电路,信号处理电路包括信号处理单元与外围电路。根据功能需求, 增加相应的电路,包括有通信电路、显示电路、存储电路、时钟电路等外围电路。

根据项目指标要求,设计的SAW标签可接收40ns的脉冲询问信号,由SAW标签发射极的间距确定每个脉冲回波延迟时间约为115ns。

阅读器工作开始后信号处理电路产生一段脉宽为40ns脉冲控制信号,送给发射电路,经过发射电路一系列调制处理,转换成脉宽是40ns,载频是915MHz的射频询问信号,通过天线发射出去。遇到SAW标签后,标签反射回带有标签信息的射频回波信号,阅读器接收时经过接收电路一系列处理,解调出代表标签信息的回波包络信号,回波包络信号是具有24位,脉宽40ns的脉冲回波,每个回波的延迟时间约为115ns。之后送给信号处理电路进行进一步的识别和处理,完成识别标签的信息。

2 信号处理电路设计

信号处理电路主要负责阅读器的系统控制与信号处理任务。包括:发射时,控制射频开关截取40ns脉冲信号;接收时,数字采集经过射频接收电路解调的回波信号,将回波信号转化为标签编码数据进一步处理。其中回波信号的每个脉冲的脉宽为40ns,每个脉冲信号延迟时间为115ns,带宽则为

接收处理过程就是高速数据采集过程。分析指标要求,信号处理电路设计的关键点如下:

(1)产生高速控制信号控制发射端的射频开关在40ns开与断。

(2)模拟信号到数字信号的转换速度。

(3)经过高速模数转换后,采样速率很快,信号处理器接收数据的速度必须匹配ADC(Analog To DigitalConverter)的转换速度。

对于关键点(1),选择高速处理器,通过软件编程实现40ns响应时间的高速控制信号。

对于关键点(2),模拟信号的最高频率达到

根据奈奎斯特采样定律,采样频率要在64MHz以上,本系统采用采样频率为80MHz的高速ADC。

对于关键点(3),ADC采样速率很高,达到80MHz,处理器无法直接接收处理如此庞大的采样数据。所以需要数据缓冲,这里选用FIFO(First Input First Output)实现数据缓存功能。

2.1 系统结构与器件选择

为了使系统结构简单,我们选用一种高性能的MCU(Micro Controller Unit)作为系统的信号处理核心。如图2所示,信号处理电路由MCU、ADC、FIFO、以及其他外围电路组成。

ADC的选择:接收脉冲的宽度为40ns,带宽为25MHz,根据采样定理,这里选用ADI公司的AD9057,8bit 80MHz,输入输出延迟时间tPD=9.5ns。

FIFO的选择:FIFO接收存储来自ADC高速输出的数字信号,还要将数据输出给MCU,这对FIFO的存取速度由很高的要求,这里选用IDT公司的SUPERSYNC II系列FIFOIDT72V223,最高166MHz操作时钟,容量1024x9 bit,具有可编程性,选用异步模式。

MCU的选择:通过软件编程实现40ns的脉冲控制信号,接收时实现高速的数据采集,RFID系统要求高速工作速度,这里选用性能优秀C8051F131。C8051F是完全集成的混合信号系统级芯片,它的CIP-51内核采用流水线结构,在同频率下是标准8051指令执行速度的12倍,C8051F131最高支持100MHz的时钟频率,处理速度也可达到100MIPS,32个I/0,128K Flash,8448字节内部RAM,可寻址64KB的片上外部RAM。

时钟的选择:ADC与FIFO的工作状态由MCU控制。钟振提供ADC采样时钟与FIFO写时钟,ADC采样时钟与FIFO写时钟只有同步数据才能不丢失,通过查询器件的数据资料,ADC转换速度与FIFO的存取速度可以实现衔接,可共用钟振。FIFO的读时钟与控制由MCU产生。

2.2 硬件电路设计

根据系统结构与器件的数据资料,部分电路设计如下:

(1)AD9057的电路设计:将射频接收电路输出端接入AD9057输入端:AD9057的8位数字信号输出端与IDT72V223的低8位输入端连接;使用C8051F13l控制AD9057的PWRDN端,控制AD9057的工作状态。

(2)IDT72V223的电路设计:在IDT72V223主复位过程中,对相应引

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top