基于ATmega8单片机多功能实验仪设计
摘要:提出一种单片机多功能实验仪的设计方法,该方法利用ATmega8单片机的在线自编程Flash和片载外围接口电路等资源优势,克服了传统51系列芯片的资源有限、低性能等应用弊端,提高了单片机实验仪的性价比,使单片机实验开发系统更简单、轻便、易于更新和升级。在实际的教学和科研使用中取得了良好的效果。
关键词:ATmega8;单片机;多功能实验仪;PWM;扩展模块
O 引言
由于嵌入式系统应用技术的不断发展,对于核心处理器性能的要求越来越高,一些传统的51系列控制芯片已经难以胜任许多复杂的任务。因此,我们通过调研分析,自行开发了一套基于ATmega8高性能系列单片机的实验开发系统。ATMEL公司的ATmegs8单片机是一种具有独特结构的8-bit RISC CPU,其在线自编程Flash和单时钟指令,为C语言、Basic语言优化的指令系统设置,以及丰富的片载外围接口电路,使功能强大的ATmegs8单片机成为一款高度灵活和高性价比的芯片,为许多高端嵌入式系统设计提供了优秀的解决方案。
1 系统总体设计
单片机多功能实验仪硬件的总体设计原理框图如图l所示:
单片机实验开发应用系统中ATmega8 MCU核心模块通过RS-232与PC上位机进行通信,充分利用PC机的资源。电源部分采用USB与PC机进行连接,采用上位机的电源。另外,该实验开发系统设计有下载器,只需一条下载线即可开始工作,不需购买昂贵的编程器,使用方便,节约了成本。可以保证实验系统具有较高的性价比。
在实验软件上,既可以使用C语言也可以使用BASCOM-AVR编程软件。BASCOM-AVR编程软件为开发AVR单片机提供了功能强大、简洁方便的软件平台,其与QB高度兼容的BASIC语言易懂好学;功能齐备的硬件仿真平台,使单片机的学习、实验、开发,显得简单、容易而富有乐趣,许多设计在计算机仿真中就可得知结果。有了BASCOM-AVR,使大规模地推广普及AVR单片机成为可能,为许多高端嵌入式系统设计提供了优秀的解决方案。
2 硬件电路的设计
2.1 CPU模块的设计
ATmegs8是ATMEL公司在2002年第一季度推出的一款新型AVR高档单片机。ATmegs8内部集成有丰富的硬件接口电路,2个具有比较模式的预分频器(Separate Prescale)的8位定时/计数器。1个预分频器(Separat Prescale),具有比较和捕获模式的16位定时/计数器,1个具有独立振荡器的异步实时时钟(RTC),3个PWM通道,可实现任意16位、相位和频率可调的PWM脉宽调制输出,8通道A/D转换(TQFP、MLF封装),6路10位A/D+2路8位A/D,6通道A/D转换(PDIP封装),4路10位A/D+2路8位A/D,1个I2C的串行接口,支持主/从、收发四种工作方式,支持自动总线仲裁,1个可编程的串行USART接口,支持同步、异步以及多机通信自动地址识别,1个支持主/从(Master/Slave)、收/发的SPI同步串行接口,带片内RC振荡器的可编程看门狗定时器,片内模拟比较器。围绕核心芯片所设计的CPU模块如图2所示。
图中的复位电路RESET有二种选择:外部复位,J10必须插上短路块;或PC6作I/O口用,J10拔出短路块。
图中的晶振电路XTAL1和XTAL2分别是片内振荡器的反向放大器的输入、输出端,外接一个晶体振荡器,通过对熔丝位CKOPT编程和设定C9、C10的取值范围(12μm~22 μm)使ATmega8有较宽的工作频率范围(3.O MHz~8.0 MHz)。晶振有两种选择:外接8 MHz无源晶振,(也可外接8 MHz有源晶振,当外接无源晶振不能起振时,用有源晶振就能解决问题,超频也能起振),或用内部RC振荡器。当J11与J12插上短路块时,为用外接无源晶振;当J11与J12不插短路块时,则用ATmega8内部振荡器。
另外,模块还设计有JTAG接口和ISP编程接口(ISP即in-System Programmable)。JTAG接口可以通过下载器将单片机与微型计算机的并行接口连接。ISP编程接口是在线下载或读取芯片内部程序时用的,各引脚的含义如图3所示。其中l脚与ATmega8的PB3连接。4、6、8、lO接地,5脚与ATmega8的PC6连接,7脚与ATmesa8的PB5连接,9脚与ATmega8的PB4连接。
2.2 下载器模块
下载器由接口板和连接电缆组成。接口板的原理图见图4。图中U201是8缓冲器74HC244电路,用作计算机并口和单片机的缓冲隔离。连接器CN202是通用的DB25针插头,与上位机连接,进行通信;其中4、5脚控制U201芯片,在其低电平时允许数据正常传输,高电平时74HC244的输出呈高阻状态;7脚输出数据到单片机;6脚是时钟信号;9脚是输出复位信号;10脚是接收从单片机读出的数据。下载电缆采用10芯扁平电缆,两头压有IDC插头。一端接下载器,另一端接最小系统板上的ISP口JP1。
2.3 实验仪其他电路设计
2. 3. 1 A/D转换电路
图5为A/D转换电路,ATmega8内部有一个1O位精度的A/D转换器,其精度是±2LSB,非线性度为O.5 LSB,转换时间为65μs~260μs,PC0~PC3模拟输入通道的转换精度是10位,PC4~PC5模拟输入通道的转换精度是8位,本实验仪使用PC5输入,参考电压Vref采用芯片内部提供的参考电压,在外部用电容C5和C6将引脚接地可以提高ADC部分的抗干扰能力。通过调节W1可以改变输入的电压。CZ4为外部A/D转换接口。
实验仪 设计 多功能 单片机 ATmega8 基于 相关文章:
- 基于单片机的夫兰克-赫兹实验仪设计方案(12-02)
- 基于FPGA的DSP设计方法(08-26)
- 电力电子装置控制系统的DSP设计方案(04-08)
- 基于DSP Builder的VGA接口设计(04-10)
- 基于DSP和USB的高速数据采集与处理系统设计(05-01)
- 数字信号处理(DSP)应用系统中的低功耗设计(05-02)