基于LPC2220低压无功补偿控制器设计
历史数据的存储可以对控制器运行状况进行自我监测,对其进行后台分析后可以用来确定无功补偿装置的性能,分析该地区电网的实际负荷量以及负荷变化曲线,对于今后的电网维护及其改造均有着很重要的参考价值。控制器需要存储运行三个月内的整点数据、投切数据和报警数据。数据量较大,类型也比较多。LPC2220 访问外部存储器时必须通过其外部存储器控制器( EMC) 。EMC 是一个AMBA- AHB 总线上的从模块, 它为AMBA-AHB 系统总线和外部存储器提供了一个接口。该模块可同时支持多达4 组独立配置的外部存储器,每组支持M、ROM、Flash(闪存)、Burst ROM等,最大存储容量为16MB,并通过编程可将数据总线宽度配置为8、16、32 位。SST39LF/VF160是一个1M×16的CMOS多功能并行Flash器件,可进行快速擦除(扇区、块、芯片)和字编程,具有软、硬件写保护功能,掉电数据保持时间大于100年。因此,该芯片常应用在大容量数据存储的场合,尤其适用于要求程序、配置或数据存储器可方便和低成本地更新的应用[4]。具体接线方法是LPC2220的CS0接至SST39VF160的CE端。LPC2220的Pin90接的读信号OE; LPC2220的WE(Pin29)接写信号SST39VF160的WE端;16位数据总线[D0~D15]与LPC2220的[D0~D15]连接; LPC2220外部存储器的引脚地址输出线[A1~A20]与SST39VF160芯片的[A0~A19]连接。
人机接口单元负担装置与操作人员之间的信息交换工作。友好的人机接口对于装置的使用和维护都是非常重要的[5]。液晶显示部分可以采用分段式液晶屏,常用256段(32×8)液晶屏控制芯片HT1622,它与主控制器通信只需要4条线,接口非常方便。
低压无功补偿控制器工作于变压器副边(低压侧),220V电压是控制器最易获得的电源,由电源适配器输入12V以上的直流电源,经7912等器件便可得到稳定的12V直流电压,用于复合开关的控制信号。考虑到开关电源的高效节能特点,而内部电路工作在高频开关状态,所以自身消耗的能量很低,电源效率可达80%左右,比普通线性稳压电源提高近一倍。控制器各个模块需要5V、3.3V、12V。MC34063本身包含了DC/DC变换器所需要的主要功能,且价格便宜。它由具有温度自动补偿功能的基准电压发生器、比较器、占空比可控的振荡器,R-S触发器和大电流输出开关电路等组成,能输出l.5A的开关电流。它能使用最少的外接元件构成开关式升压变换器、降压变换器和电源反向器。由MC34063将电压降到5V,部分提供给外设,同时由REG1117可将电压降至3.3V和1.8V。
控制器与上位机远程通讯功能可通过使用UART外扩LQ-8100型GPRS传输模块。该模块具有RS-232数据接口,可实现串口透明的无线传输,实时稳定可靠高速、配置简单。LQ-8100采用的GPRS技术,实现数据分组发送和接收,用户永远在线且按流量计费,迅速降低了服务成本。LQ-8100与终端接线如图4。
无功补偿控制器软件设计
软件设计须在硬件、软件功能划分的基础上进行。控制器是个多任务、对实时性和可靠性要求比较高的系统。μC/OS-Ⅱ作为嵌入式实时操作系统,具有源代码公开、可移植、可固化、可裁剪、多任务、任务堆栈、系统服务、中断管理等特点[6]。在LPC2220上嵌入μC/OS-Ⅱ实时操作系统。μC/OS-Ⅱ进行任务调度的时候,会把当前任务的CPU寄存器存放到任务的堆栈中,然后当从另一个任务退出时,堆栈恢复原来的工作寄存器,继续运行原来的任务。控制器软件体系结构框图如图5。底层驱动程序需完成键盘读取、LCD显示、以及接口的读写等底层功能,把代码封装成函数,供上层调用。操作系统层可将多个“同时”发生的事件划分为相对独立的“任务”,确保事件得到适时处理。用户任务按照系统所需管理的任务来模块化地编写程序。按系统功能可分为采集模块、计算模块、投切控制模块、数据存储模块、通讯模块等。整个系统的工作过程是,系统开机数据初始化,读取电网参数,进行相应计算判断是否投切电容,输出控制信号。当整个过程中出现中断,如修改设定参数、记录历史数据等,μC/OS-Ⅱ操作系统可以对中断进行及时反应,执行相应任务。
无功补偿控制量的选择直接关系到无功补偿的效果。以功率因数为控制量是无功补偿的传统方法之一。但仅以功率因数作为投切判据并不能直接反映无功缺额的大小,可能会出现实际无功的总量已经很大但功率因数却仍在“合理”范围内的情况。所以仅由功率因数作为投切判据构成的自动投切装置无功补偿效果较差,甚至在某些负荷状态下存在频繁误动作的缺陷[7]。如果以无功功率作为投切判据,由于检测量与控制目标
- μC/OS-II下通用驱动框架的设计与实现(07-23)
- 基于DSP的谐波控制器的研制(04-09)
- 数字信号控制器在变频家电中的应用(05-15)
- 基于DSP的磁流变阻尼器的控制方法(04-14)
- DSP+FPGA在高速高精运动控制器中的应用(05-17)
- 基于AT89C51+DSP的双CPU伺服运动控制器的研究(05-26)