微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 嵌入式设计 > 基于单片机的新型节能日光灯系统的设计

基于单片机的新型节能日光灯系统的设计

时间:03-18 来源:互联网 点击:

随着社会的发展和人口的增长,节能已成为一个重要的社会课题。日光灯是目前使用最为广泛的一种灯具,但同大多数灯具一样,一旦开启,无论外界光强多大,它们都只能发出单一光强的光,这造成了能源的浪费。针对这一现象,本文提出了基于单片机的新型日光灯系统,通过采集外界光强信息,采用AT89C51单片机控制日光灯输出光强的方式,使日光灯随外界光强的变化而自动调整照射光强,在满足使用者的用光要求的前提下,达到节约能源的目的。系统具有结构简单、可靠性高、成本低等特点,可广泛用于学校学习和家庭生活。

1 硬件电路组成及工作原理
1.1 系统硬件结构
系统构成如图1所示。系统分为光线采集、单片机控制和日光灯自动调整3部分。光线采集部分主要由光敏电阻、三极管和配套电路组成;单片机控制部分主要由AT89C51单片机及其外围电路,ADC0809模数转换器组成;日光灯自动调整部分系统主要由光耦MOC3052,双向三极管BT136及其外围电路组成。光线采集部分通过光敏电阻感受外界光强,通过其阻值的变化将外界光强的变化转化为输出电压的变化。单片机控制部分通过ADC0809将电压的模拟量转化为数字量,经过分析处理输出占空比可控的PWM波。日光灯自动调整部分根据PWM波调整日光灯灯管两端的电压,可在一定电压范围内达到较高的调控精度(0.1 V),以达到控制照射光强的目的。

1.2 光强采集电路
如图2所示,本设计采用的是基极分压式射极偏置电路,由Vcc(5 V)、基极电阻R5、R1和集电极电阻R6组成,三极管射极直接接地,其中R5、R6是普通电阻,R1为光敏电阻。该电路具有很好的稳定性,阻值很大的R5直接接在三极管的基极,起到很强的控制基极电流的作用,可以有效防止由于温度等原因造成的电阻阻值波动对测量结果的影响。光敏电阻直接接受外界光强,所选光敏电阻光谱峰值540 nm,亮电阻(10LUX)5~10 kΩ,暗电阻0.6 MΩ。

当外界光强变大时,光敏电阻R1阻值变小,电流IR1变小,三极管基极电流Ib变小,集电极电压,即输出电压IN0-BAK变大。同理,当外界光强变小时,输出电压IN0-BAK变小。这样,三极管将由光强变化引起的电流变化转化为电压变化输出,接入ADC0809数模转换的输入端口。
1.3 A/D转换电路设计
本设计选用8位模数转换器ADC0809。该芯片是典型的8位8通道逐次逼近式A/D转换器,可对8路模拟电压实现分时转换。为了换算方便,设置基准电压为5 V,即模拟量输入为+5.0时,ADC输出为0FFH,即225,系统分辨率为50/255=0.2V/LSB。基准电压设为5 V,为保证转换的精度,由LM7805精密稳压器提供。
LM7805联接方式如图3所示,J1接12 V普通直流电源,C6和C7作为输入和输出的滤波电容,C12为输入电阻,C3为负载电阻。


1.4 单片机电路设计
本系统采用Atmel公司生产的AT89C51单片机。它是一种低电压、低功耗、高性能的CMOS 8位单片机,片内含8 kB可反复擦写的程序存储器和256 B的数据存储器。单片机及其必要的外围电路,包括复位电路和晶振电路如图4所示。

本系统使用AT89C51自带的PWM模块,通过内部定时器,采用脉宽调制技术。输入端P2.O~P2.7输入8位由IN0-BAK端电压转化的数字输入量,由P1.3口输出不同占空比的方波。这样将输入的外界光强的变化转化为输出的PWM波的占空比的变化。
1.5 日光灯控制电路
如图5所示,本模块为核心部分。P1.3为PWM波输入,高低电平分别为5 V和0 V,R11为上拉电阻,起限流作用。SMD元件为MOC3052,是一种光电耦合器件,用于弱电电路和强电电路的有效隔离。J2接220 V交流电源,J3接地,R10为日光灯电阻,两端分别接日光灯的火线和地线。R7和R8为对称大功率电阻,起限流作用。
当P1.3输入为低电平时,光耦MOC3052导通,为双向晶闸管控制极提供导通脉冲,双向晶闸管导通,起到分流的作用,设此时日光灯电阻R10两端电压为V12;同理,当P1.3输入为高电平时,光耦截止,双向晶闸管截止,设R10两端电压V2。其中,V2V1。所以通过对占空比的改变,即改变光耦的导通时间,可以有效地控制日光灯两端的电压,即达到变日光灯光强的效果。
由于日光灯的灯管开始点燃时需要一个高电压,正常发光时则允许通过不大的电流,这时灯管两端的电压低于电源电压。本实验使用的日光灯功率为40 W,经测定,起辉电压最低为200 V,而正常发光后维持稳定光亮的电压要求为165~245 V,即电压可控范围为165~245 V。

2 系统软件设计
系统主要的任务是实时监测外界的光强,然后通过单片机通过输出PWM波控制光耦的开合来达到控制日光灯光强的目的。系统软件设计的重点在于单片机的编程。系统主程序流程如图6所示。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top