建立一个属于自己的AVR的RTOS
自从03年以来,对单片机的RTOS的学习和应用的热潮可谓一浪高过一浪.03年,在离开校园前的,非典的那几个月,在华师的后门那里买了本邵贝贝的《UCOSII》,通读了几次,没有实验器材,也不了了之。
在21IC上,大家都可以看到杨屹写的关于UCOSII在51上的移植,于是掀起了51上的RTOS的热潮。
再后来,陈明计先生推出的smallrots,展示了一个用在51上的微内核,足以在52上进行任务调度。
前段时间,在ouravr上面开有专门关于AVR的Rtos的专栏,并且不少的兄弟把自己的作品拿出来,着实开了不少眼界。这时,我重新回顾了使用单片机的经历,觉得很有必要,从根本上对单片机的RTOS的知识进行整理,于是,我开始了编写一个用在AVR单片机的RTOS。
当时,我所有的知识和资源有:
Proteus6.7可以用来模拟仿真avr系列的单片机
WinAVRv2.0.5.48基于GCCAVR的编译环境,好处在于可以在C语言中插入asm的语句
mega81K的ram有8K的rom,是开发8位的RTOS的一个理想的器件,并且我对它也比较熟悉。
写UCOS的JeanJ.Labrosse在他的书上有这样一句话,“渐渐地,我自然会想到,写个实时内核直有那么难吗?不就是不断地保存,恢复CPU的那些寄存器嘛。”
好了,当这一切准备好后,我们就可以开始我们的Rtosformega8的实验之旅了。
本文列出的例子,全部完整可用。只需要一个文件就可以编译了。我相信,只要适当可用,最简单的就是最好的,这样可以排除一些不必要的干扰,让大家专注到每一个过程的学习。
第一篇:函数的运行
在一般的单片机系统中,是以前后台的方式(大循环+中断)来处理数据和作出反应的。
例子如下:
makefile的设定:运行WinAvr中的Mfile,设定如下
MCUType:mega8
Optimizationlevel:s
Debugformat:AVR-COFF
C/C++sourcefile:选译要编译的C文件
#includeavr/io.h>
voidfun1(void)
{
unsignedchari=0;
while(1)
{
PORTB=i++;
PORTC=0x01(i%8);
}
}
intmain(void)
{
fun1();
}
首先,提出一个问题:如果要调用一个函数,真是只能以上面的方式进行吗?
相信学习过C语言的各位会回答,No!我们还有一种方式,就是“用函数指针变量调用函数”,如果大家都和我一样,当初的教科书是谭浩强先生的《C程序设计》的话,请找回书的第9.5节。
例子:用函数指针变量调用函数
#includeavr/io.h>
voidfun1(void)
{
unsignedchari=0;
while(1)
{
PORTB=i++;
PORTC=0x01(i%8);
}
}
void(*pfun)();//指向函数的指针
intmain(void)
{
pfun=fun1;//
(*pfun)();//运行指针所指向的函数
}
第二种,是“把指向函数的指针变量作函数参数”
#includeavr/io.h>
voidfun1(void)
{
unsignedchari=0;
while(1)
{
PORTB=i++;
PORTC=0x01(i%8);
}
}
voidRunFun(void(*pfun)())//获得了要传递的函数的地址
{
(*pfun)();//在RunFun中,运行指针所指向的函数
}
intmain(void)
{
RunFun(fun1);//将函数的指针作为变量传递
}
看到上面的两种方式,很多人可能会说,“这的确不错”,但是这样与我们想要的RTOS,有什么关系呢?各位请细心向下看。
以下是GCC对上面的代码的编译的情况:
对main()中的RunFun(fun1);的编译如下
ldir24,lo8(pm(fun1))
ldir25,hi8(pm(fun1))
rcallRunFun
对voidRunFun(void(*pfun)())的编译如下
/*voidRunFun(void(*pfun)())*/
/*(*pfun)();*/
.LM6:
movwr30,r24
icall
ret
在调用voidRunFun(void(*pfun)())的时候,的确可以把fun1的地址通过r24和r25传递给RunFun()。但是,RTOS如何才能有效地利用函数的地址呢?
第二篇:人工堆栈
在单片机的指令集中,一类指令是专门与堆栈和PC指针打道的,它们是
rcall相对调用子程序指令
icall间接调用子程序指令
ret子程序返回指令
reti中断返回指令
对于ret和reti,它们都可以将堆栈栈顶的两个字节被弹出来送入程序计数器PC中,一般用来从子程序或中断中退出。其中reti还可以在退出中断时,重开全局中断使能。
有了这个基础,就可以建立我们的人工堆栈了。
例:
#includeavr/io.h>
voidfun1(void)
{
unsignedchari=0;
while(1)
{
PORTB=i++;
PORTC=0x01(i%8);
}
}
unsignedcharStack[100];//建立一个100字节的人工堆栈
voidRunFunInNewStack(void(*pfun)(),unsignedchar*pStack)
{
*pStack--=(unsignedint)pfun>>8;//将函数的地址高位压入堆栈,
*pStack--=(unsignedint)pfun;//将函数的地址低位压入堆栈,
SP=pStack;//将堆栈指针指向人工堆栈的栈顶
__asm____volatile__(RETnt);//返回并开中断,开始运行fun1()
}
intmain(void)
{
RunFunInNewStack(fun1,Stack[99]);
}
RunFunInNewStack(),将指向函数的指针的值保存到一个unsignedchar的数组Stack中,作为人工堆栈。并且将栈顶的数值传递组堆栈指针SP,因此当用ret返回时,从SP中恢复到PC中的值,就变为了指向fun1()的地址,开始运行fun1().
上面例子中在RunFunInNewStack()的最后一句嵌入了汇编代码ret,实际上是可以去除的。因为在RunFunInNewStack()返回时,编译器已经会加上ret。我特意写出来,是为了让大家看到用ret作为返回后运行fun1()的过程。
- Flash损耗均衡的嵌入式文件系统设计(06-01)
- 锁相环控制及初始化简析(08-27)
- 基于AVR单片机的ISP1362OTG设计(09-06)
- 基于AVR单片机的串口转FSK的通信模块设计(01-23)
- 案例分析:基于AVR32的隧道环境监测系统(03-18)
- 科技帮我们远离灾难:灾难检测飞行器(03-18)