微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 嵌入式设计 > 基于DSP的无刷直流电机速度控制系统

基于DSP的无刷直流电机速度控制系统

时间:05-18 来源:互联网 点击:

在该设计方案中,功率电子主回路采用两两通电方式,在任意时刻,电流仅仅流人三相绕组中的两相,因此从另一角度看,只需控制一个电流,亦即只需要一个相电流检测传感器。在本系统中,使用一个旁路电阻检测各项的电流。该电阻位于三相全控功率变换电路的下端功率桥臂与地之间,同时起到一个功率变换电路的过电流保护作用。电阻上的压降信号经过放大以后,送到TMS320F240片上的某一路A/D转换通道,经过A/D转换以后,得到合适的电流信号。在A/D转换结束以后,A/D转换模块向CPU发出一个中断请求信号,等待CPU对该电流信号的检测。每隔50μs,DSP对相电流进行采样,从而实现了频率为20 kHz的电流调节环。根据电流误差,PID控制器在每个PWM周期开始时,对PWM脉冲的占空比进行调节。

3.2磁极的位置检测

采用DSP控制电机时,无需再设计专门的PWM调制电路,因此选用TMS320LF2407A DSP来实现三相无刷直流电机调速的控制和驱动电路。本设计方案中,使用了3个位置间隔120°分布的霍尔传感器,由霍尔器件所输出的转子位置信号送到功率变换电路后,直接送至TMS320LF2407A的捕获单元进行处理,每个霍尔传感器的输出与捕获单元的一个输入引脚相连。通过产生捕捉中断来给出换相时刻,同时给出位置信息,实现定频PWM和换相控制。3个霍尔传感器输出3个180°的交叠信号,每个输出信号的上升沿和下降沿都被检测到,从而产生6个强制换向信号,每2个换向信号之间相差60°。在本方案中,片内通用定时器2用作捕获单元的时基,定时器2设为连续计数模式,其周期寄存器(T2PER)被设定为0FFFEH,预定标因子被设定为128;当CPUCLK=20 MHz时,定时器的这种设置使得电动机的最小可调整转速为24 r/min。

3.3 速度检测

根据位置传感器的输出信号,可以计算得到电动机的转动速度。转子旋转一周的时间内,霍尔器件共产生6个换向信号。在2个换向信号之间存在60°机械角度,当前的转速可通过下式计算得到:

n=△θ/△T

式中,θ为机械角度;T为转子转过θ所花费的时间。

捕获单元对每个霍尔器件输出信号的两个边沿都进行检测,当上升沿被捕获到时,捕获单元设置相应的中断标志。在中断服务子程序中,CPU首先判断所检测到的是上升沿还是下降沿,然后计算从上次边沿被检测到以来所经过的时间T,根据该时间实现绕组电流的换向。由于霍尔传感器相对于电动机转子而言位置是固定的,2个换向信号之间的轴偏移是常数θ。

4系统软件设计

主程序主要是初始化DSP所需要用到的控制寄存器(包括设定系统时钟、系统状态寄存器等)、初始化I/O端口(包括设定LF2407A片内多路复用的I/O口功能及其极性)、初始化中断设置(确定系统所需要用到的中断类别及中断源)、检测电机的初始位置以及初始化需用到的控制变量等。

中断程序主要包括调节子程序、ADC转换中断子程序(位置调节子程序,速度调节子程序,电流调节子程序),如图4和图5所示。

图6为积分分离式PID控制算法流程图,在位置环控制时采用此算法。通过DSP检测出给定位置信号和实际反馈位置信号的偏差e(k),根据实际情况,认为设定阈值ε>0;当∣e(k)∣>ε时,采用PD控制,可避免产生较大的超调,又使系统有较快的响应;当∣e(k)∣≤ε时,采用PID控制,保证系统的控制精度。

5结语

本文应用TI公司的TMS320LF2407A DSP设计了一个基于位置、速度、电流三闭环结构的直流无刷电机控制系统,并对直流无刷电机的原理及其控制算法进行了研究。经分析,该系统不仅成本低,易于实现并且性能稳定,方便扩展,无论是对工程实践还是对电机调速方面的研究都有重要意义.

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top