微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 嵌入式设计 > 基于DSP的通用变频器技术

基于DSP的通用变频器技术

时间:06-15 来源:互联网 点击:

从霍尔电流传感器输出的Ui=2.5±△V,此电压先后施加到由TLC2274构成的两个减法电路上,第一路以Ui减去传感器采样结果的中值参考电压Uref(2.5V),然后再线性放大到A/D采样所要求的电压范围;第二路则相反,再中值参考电压Uref减去传感器输出电压Ui,同样也线性放大到合适的电压范围。Z1、Z2为两个3.3V的稳压二极管,对运放输出电压起到限幅作用。当Ui值>Uref时,Uo1输出为正电压,且电压范围是0-3.3V,而由于二极管D2的存在使得电流不能注入到运放中,故而第二路运放不能输出负电压,而是钳位在0V;当Ui值Uref时,Uo2输出为正电压。现样由于二极管D1在存在使得第一路运放不能输出负电压,也是钳位在0V。在一个正弦波周期内的某一时刻只会有一路信号输出,这比常规方法采样窗口要宽一倍,从而提高了采样精度。

  由于电机启动时的电流非常大或因控制回路、驱动电路等误动作,造成输出电路短路等故障,导致过大的电流流过IGBT,且电流变化非常快,元件承受高电压、大电流,因此需要一种能快速检测出过大电流的电路。可以采用2SD315A自身检测和检测直流母线的双重检测以及在故障发生时,采用软、硬件同时封锁的方法。直流母线电压的变化,对整个逆变系统有较大的影响。当母线电压过低,电网输出不能达到系统要求时,需要尽快切断电源,防止对电机或者逆变系统造成破坏;相反,母线电压过高,很容易使功率驱动管烧毁。为有效地保护功率IGBT和直流滤波电容,系统设计了母线电压过欠压保护电路,故障检测原理如图4所示。图中6N138为一个线性光电隔离器,输出电压信号与母线电压成正比,当通过光电隔离器件后,可以直接供给DSP控制系统进行采样。同时,将输出Vlimit信号送至DSP,触发中断保护。

图4 故障检测原理图

  1.3 系统控制算法软件实现

  DSP数字控制能够实现较之模拟控制更为高级而且复杂的控制策略,与模拟控制电路相比较,数字控制电路拥有更多的优点。由数字PID代替传统的模拟PID具有设计周期短、灵活多变易的控制策略和电磁干扰小等优点。数字控制系统主程序图如图5所示,主程序模块主要功能是完成系统的初始化,PLL时钟的设定:DSP工作频率设为20 MHz;输入输出端口初始化。事件管理器初始化;定时器1、2、3的设定、全比较PWM单元设定、死区单元设定;QEP工作方式设定。中断管理初始化:中断除复位、NMI位,只允许PDPINT、中断3。PDPINT是功率设备保护中断,中断3用于系统完成控制算法。

图5 数字控制系统主程序图

  2 实验结果及分析

  试验条件:输入电压是三相交流380 V±15%,电机型号为Y160L-4,额定功率为15 kW,额定电压为380 V(Y型),额定电流为30 A,额定转速为1 440 rp。

  为了验证数字控制用于调速的变频器的可行性,设计了基于TMS320F2812的试验机。系统输入电压为交流380 V,测量仪器为Agilent54622A示波器,高压探头衰减系数100:1,频率设定值为变频器液晶面板显示值。A、B两点的电压波形如图6、图7所示。以实验结果可以看出,设计方案具有一定的可行性。采用基于高速DSP的SPWM方式控制的逆变器,其输出的波形具有较好的正弦波,谐波优化程度高,大大减少了谐波损耗,提高了电压的利用率,增加了系统运转的平稳性。但由于没有结合波形控制技术,在带整流负载时的输出波形有一定的畸变。

图6 20.001HZ时A、B线电压波形

图7 14.99HZ时A、B线电压波形

  数字控制变频器相对模拟控制变频器具有不可比拟的优势,如减少了体积和重量,提高了控制精度,方便维修升级。随着控制理论与实施手段不断完善以及DSP价格不断降低,数字控制变频器将成为重要的研究方向。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top