微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 嵌入式设计 > 基于BES7456芯片的OSD的应用平台设计

基于BES7456芯片的OSD的应用平台设计

时间:06-22 来源:互联网 点击:

读寄存器时,如上文所述,拉低CS在SCLK的上升沿锁入SDIN。然后数据在SCLK的下降沿从SDOUT输出。SPI命令长度为16位:最高8位(MSB)代表寄存器地址,最低8位(LSB)代表数据(如图2、图3所示)。这种格式有两个例外:
①自动递增写模式,用于访问显示存储器,是一个8位操作。写数据前必须写入起始地址。对显示存储器执行自动递增写命令时,8位地址由内部产生,串口只需8位数据,如图4所示。

②从显示存储器读字符数据时,若处于16位工作模式,应该是24位(8位地址+16位数据)。执行读操作时,只需要8位地址,如图3所示。
2.1.3 应用信息
(1)字符存储器CM(Character-Memory)操作
BES7456的字符存储器一次只能写入或读出全部的字符(54字节),这可通过SPI端口,经过MCU(MAxQ2000)实现。这里给出写入字符操作,读出操作类似可以相应得出:写入VM0[3]=0以禁止OSD显示→写入CMAH[7:0]-xxH,选择写入字符(0~255)→写入CMAL[7:0]=xxH,选择写入字符的4个像素字节(0~63)→写入CMDI[7:0]=xxH设置字符所选部分像素值→重复前两步,直到字符数据的54个字节写入RAM中→写入VM0[3]=1,使能OSD图像。
(2)显示存储器DM(Display Memory)的操作
对显示存储器的操作更多一些,这里给出常用的操作,其他情况对应寄存器表可以很快得出。以下步骤支持对OSD图像的查看,读写显示存储器时不需要这些动作:写入VM0[3]=1,使能OSD图像显示;写入OSDBL[4]=0,使能自动OSD黑电平控制,保证正确的OSD图像亮度,该寄存器包含4个预设为[3:0],不能修改,因此,修改第4位时,首先读取OSDBL[7:0],修改第4位,然后写回更新后的字节。
8位模式下,写入显示存储器的步骤为:向显示存储器写入字符时,8位工作模式最灵活,这一模式支持为每一个字符写入单独的字符属性字节,这一模式与16位工作模式不同,在16位模式下,当写入一个字符时,从DMM[5:3]自动复制其字符属性。写入DMM[6]=1,选择8位工作模式。
16位模式下,读取显示存储器的步骤:写入DMM[6]=0,选择16位工作模式。写入DMAH[0],选择需要读取数据的地址MSB写入DMAL[7:0]=xxH,选择需要读取数据地址的MSB以外的低位数据该地址确定字符在显示器上的位置读取DMDO[7:0],从显示存储器中的所选位置读取数据。
2.2 硬件应用平台的建立
用BES7456芯片作为OSD系统的核心部件时,需要添加相应的外围器件才行。图5为OSD模块的硬件结构框图。其中,BES7456负责对输入的模拟视频信号进行加字幕处理;MAxQ2000作为一颗低压微功耗单片机,本身自带SPI接口,可以运行10 Mbps的速率,速度快,为BES7456提供相应的控制信号,并负责通过串口与.PC通信,以获得用户自定义的字符集和配置信息,也可通过GPIO模拟SPI接口时序,但速度慢;MAX-3002是一颗双向电平转换芯片,经过设定,它可在1.2~5.5 V之间的信号进行相互转换,把它作为MAXQ2000的2.5 V系统信号转化为BES-7456可以使用的1.2 V数字系统信号,以及3.3 V的模拟信号都绰绰有余;MAX3311是与MAXQ2000配套的串口芯片,提供与PC通信的串口信号转换;MAX8881作为电源转换芯片,在此可将5 V的供电转化为单片机和buffer芯片需要的2.5 V电源,AMS117负责将5 V电源转为3.3 V,而IP3878ADJ则负责将3.3 V电源转为BES7456需要的1.2 V电源。

2.3 实现效果
采用BEST456芯片作为OSD核心部件的系统显示,非常稳定适合于模拟电视信号的视频字幕的叠加。而且这一系统能够随时调整显示字幕的内容,方便修改并可通过I2C接口编辑字幕库。

图6中最左边的低电平部分为视频信号的VSYNC信号,右边最高电平的一部分为叠加上去的,其余的是正常视频信号。图7中背景为实验室的测试屋一角,高亮白电平为自己编辑的字幕,可以自由改变其内容。

结语
如上所述,使用自主研发BEST456芯片作为字幕叠加处理芯片完全可以到达很好的显示和应用效果。使用它不仅可以摆脱国外产品对我国此类芯片的垄断,有效节约成本,也能促进我国集成电路产业的发展。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top