微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 嵌入式设计 > 半导体培养箱的ARM嵌入式控制系统研制

半导体培养箱的ARM嵌入式控制系统研制

时间:08-10 来源:互联网 点击:

生物培养箱作为一种广泛应用于生物、农林等学科的实验设备,其传统的加热制冷方式具有噪音大、温控调节精度不高且污染环境等缺点。对此本文设计了一款利用半导体材料作为温控元件的生物培养箱。在此设计中,一方面采用新型半导体热电转换技术,通过半导体材料的三种形式将热能和电能进行直接转换,以实现温度调节,并辅以湿度、光照的调节;另一方面采用ARM9处理器作为硬件平台,移植开源的Linux操作系统,并研发了模糊PID控制系统。不仅减小了噪音,还降低了产品的成本,且具有控制速度快、精度高及性能稳定等特点,为培养箱的设计提供了一种新的思路。
1 半导体培养箱的硬件设计
该培养箱的硬件部分由信号采集模块、核心处理模块和控制模块组成,其中信号采集模块又分温度、湿度采集。温度采集是采用单总线数字温度传感器DS18B20,微处理器依据其器件寄存器内置序列号对所匹配的传感器进行读取,以此实现多点分布式应用;湿度采集是采用湿度传感器SHT11,微处理器采用二线串行数字接口和温湿度传感器芯片SHT11通信以完成湿度信号采集。核心处理模块采用基于ARM920T 架构的S3C2440AL处理器为CPU的核心板,负责完成数据的运算与扩展外围通信接口、USB接口、扩展接口、多媒体接口等硬件资源,且该核心板还具有支持触屏控制等功能。控制模块以继电器电路为主体,核心处理模块输出的控制信号,经继电器电路接执行元件,实现对热电半导体、超声波加湿、T4灯等工作状态控制。本培养箱的硬件结构如图1所示。

1.1信号采集模块
信号采集模块的功能采用上述DS18B20芯片和SHT11芯片来分别采集培养箱内的温度和湿度。DS18B20由美国DALLAS公司生产,具有微型化、低功耗、抗干扰能力强、器件唯一编码、支持分布式寻址等功能,适用于各类温度测控系统。其内部有控制电路、64 bit光刻ROM和温度转换器等。收发提供9~12 bit可编程设备温度读数。电压范围为3.0 V~5.5 V,测量温度范围为-55℃~125℃,-10℃~85℃范围内精度为±0.5℃。通过软件修正可达±0.062 5℃。本设计采取由数据线寄生电源供电,在培养箱内设置有2个DS18B20以进行多点检测,并通过计算此2点的温度平均值作为箱内的温度检测值[8]。
SHT11是瑞士Sensirion公司生产的具有I2C总线接口的单片全校准数字式相对湿度和温度传感器。该传感器将温湿度传感器、信号放大器、A/D转换、I2C总线接口集成于一片芯片上(CMOSensTM技术),具有数字式输出、免调试、免标定、免外围电路及全互换的特点。其二线串行接口SCK支持CRC传输校验,传输可靠性高且测量精度可编程在线调节。该芯片集成电容性聚合体湿度敏感元件,将湿度转换成电信号,并将此信号经放大后输入一个14位的A/D转换器,最后经I2C总线数字接口输出数字信号。
1.2 核心处理模块
核心处理模块采用Samsung公司的S3C2440AL处理器,其拥有ARM920T核,能运行32 bit RISC指令集指令及16 bit的精简Thumb指令代码,具有16 KB数据CACHE与指令CACHE,具有MMU(Memory Management Unit)功能。该处理器主频可达400 MHz,并支持SPI、IIC等多种总线扩展方式[1],能够满足培养箱控制系统的要求。根据培养箱硬件设计的实际要求,此系统由两片32 MB的SDRAM和一片64 MB的NAND Flash组成了最小系统,并将启动代码存放在NAND Flash的起始段中。系统扩展外围接口,其中:处理器的标准串行通信接口UART0外接MAX232芯片与宿主机相连,作为调试串口;处理器的两路通用串行总线USB(Universal Serial Bus),一路USB HOST用于U盘接口,一路USB Slave实现数据的传输;LCD接口接东华3.5英寸LCD触屏; GPIO(通用输入/输出口)支持与硬件的数据交互、控制硬件工作和读取硬件的工作状态信号等功能,根据设计需要,扩展GPIO定义如表1所示。

1.3 控制模块
控制模块的功能是对温度进行准确控制,使用的温控元件为热电半导体。半导体制冷原理建立在三个效应基础上:塞贝克效应 、帕尔帖效应和汤姆逊效应,构成了热电设备的理论基础。其原理是当一块N型半导体材料和一块P型半导体材料联结成电偶对时,若此电偶对接通直流电流后,其内部就会产生能量的转移:电流由N型元件流向P型元件的接头吸收热量,成为冷端。由P型元件流向N型元件的接头释放热量,成为热端。利用此原理实现制冷或加热,具有无污染、无噪声、体积小及质量轻等特点[9]。图2是半导体制冷的工作原理图。

2 半导体培养箱的软件设计
培养箱的软件平台选用开源嵌入式Linux操作系统,其内核稳定、功能强大,可裁剪并对底层硬件有丰富的函数支持。本培养箱的软件设计首先完成Bootloader下载、Kernel内核的配置、裁剪、编译与移植并制作YAFFS根文件系统,然后开发对温、湿度传感器及热电半导体等底层硬件的驱动程序,以及基于Qt/Embededded的应用程序设计,实现了GUI人机交互接口和培养箱软件工作算法,并采用以模糊自适应PID算法为核心的控制算法。培养箱软件设计的整体框架如图3所示。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top