微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 嵌入式设计 > 基于80C196KB的远程测控终端的设计

基于80C196KB的远程测控终端的设计

时间:10-08 来源:互联网 点击:

同时,RTU还自动定时检测各路灯支路的工作电压、电流,并通过无线数传模块上报监控中心,计算亮灯率,随时掌握路灯的工作状况,若路灯支路出现异常或故障,如电压越限、电流越限、异常开灯、支路开关跳闸等,RTU不仅能及时检测并向监控中心报警,还可以根据故障类型自动采取相应的保护措施,保证路灯支路安全、可靠地工作,监控中心以工控计算机为系统主机,能够根据城市所在的经纬度自动生成每日的开/关灯时间曲线,定时(自动)或随机(手动)对各路点的路灯控制方式、灯控时间等工作参数进行设置,提取各支路的电压/电流值、故障、灯态等信息,并进行存储、汇总、计算、报警和打印等处理,城市路灯自动监控系统的整体结构框图如图1所示。

  图1 城市路灯自动监控系统整体结构框图3.2 RTU硬件电路设计

如图2所示,RTU主要由80C196KB单片机、程序存储器(EPROM)、非易失数据存储器(NVRAM)、日历时钟、键盘显示电路、看门狗及复位电路、RS-232C标准串行接口、继电器控制电路、电压/电流信号采集电路、无线数传模块、天线等组成,能同时对8条路灯支路进行控制,另外,RTU还具有4路开关量和2路脉冲量输入通道,以备系统扩展。

  图2 RTU组成原理框图

RTU采用单片机为控制核心,配以32K程序存储器。80C196KB是16位单片机,内带8通道10位A/D转换器(具有采样/保持电路),A/D转换器的模拟输入端与8位并行数字输入口P0共享引脚。在RTU的硬件电路中,选择AD0通道作为模拟输入,其余的7条口线作为数字输入口线,用于扩展开关量输入通道。

日历时钟采用DS12C887提供精确的时钟信号,包括年、月、日,能产生秒或分定时中断,以判断是否到开灯或关灯时间,从而保证准确地按照开/关灯时间曲线对路灯进行开/关控制。为了使整个路灯系统同步动作,监控中心定时对所有站点的RTU进行GPS校时。

非易失的数据存储器用来存放RTU的所有工作参数、实时测量数据、实时状态和故障信息,以保障系统在掉电或通信中断的情况下信息不丢失,并在电源恢复正常后能继续正常工作。

键盘显示电路包括一个4×4键盘和一个4行16字符的图形液晶显示器。以两级菜单、全汉化的方式实现RTU工作参数、测量数据、状态信息等的在线修改与查询。

电压/电流信号采集电路由3路电压互感器、8路电流互感器和信号调理电路等组成,实现3相交流电压、8条支路电流的实时采集。互感器输出信号经过信号调理后,转换为0~5V的电压信号,经多路开关切换后,依次送单片机的AD0通道转换为数字量。

继电器控制电路主要由8路继电器及其驱动电路构成。经8位并行端口与单片机连接,接收控制信号,通过交流接触器控制路灯的开、关动作。

RTU与监控中心的远程通信采用了VHF/UHF无线数传电台通信的方式。无线数传模块通过RS-232C标准串行接口与单片机相连,配以定向天线,发射功率和天线高度根据实际系统覆盖范围要求及其环境条件选择。4 RTU软件设计

80C196KB单片机内部的A/D转换器在采用8MHz晶体时,转换周期约22μs,对A/D转换器的启动控制和转换结果的读取,都是通过寄存器操作完成,转换结束判断选择采用查询方式。RTU对所有支路采集一次电压/电流的时间周期可以用软件设置,默认为3min。

RTU现场采集的是交流信号,路灯支路的工作电压和电流,只有有效值测量才具有实际意义。因此,采用了交流采样的方法即在交流信号的一周期内,等间隔采样N个瞬时值,用软件计算电压/电流的有效值。电压/电流的有效值计算公式如下:

系统中,RTU分布在全市的各分控点上,环境条件比较复杂,存在着各种各样的干扰,为了提高数据采集的可靠性和精确度,在软件设计上采用了数字滤波的方法,连续采集5个周期的数据,计算出5个有效值,然后进行平滑滤波处理,即去掉最大值和最小值,对其余数据取算术平均值,作为实时有效值。

RTU的无线数传模块传送速率为1200bps,工作在半双工方式,除了响应监控中心的命令上传数据或故障报警时处于发送状态外,其它时间都处于接收状态,准备接收监控中心的命令。实验发现,数传模块由发送到接收状态的可靠转换需要一定的时间,所以,编程时在最后字节数据发送完毕后应先执行一段延时程序,然后再切换到接收状态,否则最后字节数据无法正常传输,延时时间可以通过实验确定。

为了提高数据传输的可靠性和准确性,一方面在数据传送前,监控中心和通信站点RTU之间先进行呼叫联络,联络成功则传送后续命令或参数。否则,若5s内无正确回应,重新呼叫,若连续3次联络失败,就认为通信暂时失败,记录信息。另一方面,由于数据传送命令类

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top