微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 嵌入式设计 > 详解多点电容触摸屏的设计挑战

详解多点电容触摸屏的设计挑战

时间:11-19 来源:互联网 点击:

定位精度是多点电容触摸屏设计的第五个挑战。现在的终端客户对在触摸屏上的定位精度要求越来越高,尤其在触摸屏边缘上定位精度。我们知道通常使用质心算法来实施的定位计算。然而由于电容触摸屏在边缘上的感应单元的不完整性和在边缘上先天地缺失半边的权重信号,在触摸屏的边缘仍然使用质心算法将带来较大的误差。因此,改进定位的算法,不仅适用于触摸屏的中间区域,同时适用于触摸屏的边缘区域使触摸的定位更准确是多点电容触摸屏设计必须面对的挑战。

设计挑战六

多点触摸手势识别和跟踪。多点电容触摸屏就是为了多点触摸和手势识别而设计的。一般使用最多可以识别十个手指的触摸。最常用的手势为一或二个手指的手势。它不仅要能识别单触点的十四种手势(上、下、左、右、左上、左下、右上、右下、左旋、右旋、单击、双击、点住和抬起),而且要能识别双触点的二十七种手势(双触点上移、双触点下移、双触点左移、双触点右移、双触点左上移、双触点左下移、双触点右上移、双触点右下移、、双触点缩小、双触点放大、双触单击、一触一上移、一触一下移、一触一左移、一触一右移、一触一左上移、一触一左下移、一触一右上移、一触一右下移、一触一左下左拐、一触一右下右拐、一触一右下左拐、一触一右上右拐、一触一Z形移、一触一三角移、一触一正方移和一触一画圆)。此外,在多于两个手指触摸时要能实时地跟踪这些手指的移动,赋予每一个触摸手指的临时识别代码不能搞错。它对手势识别算法的设计和芯片的运算速度都是一个实实在在的挑战。

设计挑战七

低功耗。任何使用电池供电的移动设备对其每一个功能单元设计的功耗要求都会非常苛刻,尤其是在当下的低碳时代。多点电容触摸屏作为移动设备中的一个功能单元当然也不会例外。要使多点电容触摸屏在完全激活的情况下功耗小于35mW、在待机的状态下功耗小于100uW并非是一件容易的事。如果一个多点电容触摸屏的设计不能达到这个要求,将会在激烈的市场竞争中处于非常不利的境地。设计挑战八

防水性能是衡量多点电容触摸屏设计性能的标志性指标。似乎使用互电容扫描的多点电容触摸屏具有天然的防水能力,它并不构成一个设计挑战。为什么这样说呢?因为使用自电容扫描的触摸屏,水滴和手指触摸产生的信号变化的方向是相同的,要将水滴从手指触摸中分辨出来颇费周折。而互电容扫描的触摸屏水滴和手指触摸产生的信号变化的方向正好是相反的,因为手指触摸使互电容减少,水滴却使互电容增加。这就给人这样一个感觉,使用互电容扫描的多点电容触摸屏具有天然的防水能力而不需要采用特别的措施去做防水处理。真实的情况并非如此简单,当水滴滴到互电容屏上时,确实不会也没有产生误触发,但当水滴被擦掉以后再用手指触摸原来的地方就不灵了。运气好的时候,过一段时间可以恢复到原先的手指触摸灵敏度。我们知道一个合格的产品是不允许这样的情况出现的,更不会去依赖好运气。因此如何解决因水而带来的手指触摸失效的问题是多点电容触摸屏设计的又一个挑战。事实上因水而带来的触摸失效的问题不仅仅指水滴,它还包括水膜和大片的水。

设计挑战九

怎样克服来自低档充电器的噪声是多点电容触摸屏设计的第九个挑战。尤其是在中国市场,大量的低档充电器被用户所选用。这类充电器所产生的噪声和其他噪声有两个特别的不同:第一是它的噪声在没有手指触摸时并不呈现出来,仅当触摸时才显现出来并且非常地强烈,使得一个有效的触摸变得很不稳定进而变得失效;其次是这个噪声是来自充电器并通过地线传到触摸屏系统的一种共模噪声,它很难通过普通的硬件滤波来滤掉,常用的数字滤波对它的滤波效果也不理想。所以必须有一种高级的滤波方法来对付这种低档充电器的噪声。

设计挑战十

信号的一致性(SD)。很多多点电容触摸屏的设计师会遇到这样一个问题,当他们的设计完成,样品测试手指触摸信号的强度满足要求。当他们将触摸屏组装进入整机,甚至准备批量生产时,一个不大不小的问题会突然出现在他们的面前:使用多点电容触摸屏的手持设备拿在手里时操作正常,但将它放在桌子上,触摸功能就不灵了。这就是信号的一致性问题,或者我们称之为信号的不一致性(Signal Disparity),简称之为SD。它是触摸屏在测试时或者拿在手里时的手指信号幅度和放在桌子上手指触摸信号的幅度不一致造成的。放在桌子上手指触摸信号的幅度会小于在测试时或者拿在手里时的手指信号幅度。当二者的幅度差足够大时,桌子上手指触摸信号的幅度时不时不能达到和超过手指信号阈值,一个有效的触

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top