微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 嵌入式设计 > 一种车牌字符识别方法的设计实现

一种车牌字符识别方法的设计实现

时间:02-08 来源:互联网 点击:

以后,一帧图像的大小大幅度减小,约为400k 左右,下面就是把该二值化车牌图像传输至NIOS II 软核内进行分割等后续处理,考虑到NIOS II软核中资源丰富的特点,本文通过增加输入输出口的数量来提升数据传入的速度,从而满足系统的实时性处理要求。根据数据传输需求,本文设计通过22 个32bit 的输入输出口来传送数据,虽然22×32=704bit 相比一帧图像的一行720bit 少了16bit,但考虑到车牌图像的边缘是非字符目标区域的背景图像,对最终识别结果的影响甚小,故可以近乎忽略。

3.1 基于车牌字母及数字特征的准确定位

通过车牌的彩色特性对车牌进行预定位后,再根据车牌号码的字母和数字在二值化后的特性准确定位出车牌的位置,如果此时定位出车牌的位置在彩色通道预定位的车牌区域内,则说明车牌位置已经确定,如果不在彩色通道定义的车牌位置范围之内,则需要重新判断。

(1)定位牌照的上下边界:若某一行的0→1(白到黑)和1→0(黑到白)变化次数大于设定的阈值,则设其为待测车牌的最低点,继续扫描直至0→1 和1→0 变化次数小于阈值,将该阈值设为待测车牌的最高点。若最高点与最低点之差大于15,则认为目标已检测到,否则继续进行扫描;如果未检测到符合上述条件的目标,则自动门限值重复以上的操作,直到找到目标为止。

(2)定位牌照的左右边界:在找到车牌的上下限后,利用二值图像在竖直方向上的投影作为特征,从左到右寻找目标的中心点坐标。

3.2 基于垂直灰度法的字符分割

在对车牌进行定位后,考虑到车牌字符的排放特点与字符间的微小间隙,采用垂直灰度法进行车牌字符的分割。主要思想是设定一个垂直投影的阈值,判断投影大于阈值则标记并保存,遇到空隙则分割,最后判断字符区域的长度是否满足字符的长度,满足字符长度的则记录为有效字符,不满足将剔除继续扫描下一个知道扫描完整行为止。

3.3 模板匹配

我国的车牌,字符标志的首位为汉字的省名缩写,次位为英文字母,再次位为英文字母或阿拉伯数字,末四位均为数字。由于实际可能出现的英文字母和数字字符数目不多,再基于NIOS II 软核的运算能力考虑,采用模板匹配方法进行字符识别。即将待识别的车牌字符矩阵与库内的标准字符矩阵(标准模版)对比,相似度最大的则认为一致。

首先将标准模板入库,按国家车牌标准的大小、字体、字符间距等打印出数张样品,其前景、背景清晰,字符没有断续,很少噪声、且包含了所有可能的车牌字符,作为标准车牌,用以采样制作标准字符矩阵库。把每一张标准车牌分割出来的字符归一化[7],接着将归一化后的模板矩阵存入FPGA中作为标准模板库,根据实验情况,模板越大识别率越高,但同时会带来运算数据量的大大增加,于是在综合考虑准确度和NIOS II软核的工作效率后采用20×15 bit大小的数组作为标准模板。

当车牌上的待识别字符归一化以后,依次与标准库中的模板进行匹配,即矩阵对应位依次做差,分别计算总的相同像素个数,则有最大相同数目的那一组数认为是相似度最大,则用此时的标准模板所对应的数字或字母作为最终识别的结果。

在PAL 制式的CCD 摄像头、Altera DE2 开发板和普通VGA 显示器的实验环境下,随机选取20 张车牌进行检测,在不同的光照条件下,正确检测出的字符率达到了90%以上,在光照较好的情况下,识别率达到94%以上,且平均识别时间不到0.1 秒,完全满足实时性的需求。实验结果表明,采用FPGA 可以很好的完成对车牌实时检测的任务,且具有体积小、功耗低、速度快等明显的优点。

4 结论

本文在利用FPGA 采集车牌图像的基础上,实现了一种利用字符归一化和模板匹配的简单快速的车牌字符识别系统,并在SOPC 中实现。系统具有视频图像采集实时,车牌定位分割准确和识别误差低等特点。这种基于SOPC 技术的片上系统设计方法具有硬件设计灵活,可扩展性强等优点,它弥补了传统PC 机系统和DSP 系统设计的不足,有效地降低了系统软硬件设计的难度,缩短了开发周期,并提高了设计的可靠性。可用于道路车辆监控、智能交通管理等应用领域,具有较高的实用价值和应用前景。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top