微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 嵌入式设计 > 用单片机控制DDS实现短波跳频系统的调制

用单片机控制DDS实现短波跳频系统的调制

时间:03-07 来源:互联网 点击:

频率合成器是利用一个(或多个)标准信号产生多种频率信号的设备。它不仅要求输出频率的精确度和稳定度高,而且要求频带尽可能宽。直接数字频率合成(DDS)是继直接频率合成和间接频率合成之后发展起来的第三代频率合成技术。由于它具有相对带宽很宽、频率转换时间短、频率分辨率很高、便于集成以及频率、相位和幅度均可控制等优点,因此被广泛应用于雷达、电子对抗等军事通信系统和移动通信中。特别是在短波跳频通信中,信号在较宽的频带上不断变化,并且要求在很小的频率间隔内快速地变换频率和相位。采用DDS技术用于跳频信号调制的理想选择。跳频系统不仅需要一个高精度迅速变化频率的频率合成器,还要求一个能产生数百或数千条跳频序列发生和频率控制的指令。本文采用89C51单片机作为中央控制芯片来产生跳频指令,控制DDS实现跳频信号的调制。

1 短波跳频通信系统的调制

短波跳频系统一般采用M进制频移键控(MFSK)调制方式。文献[1]提出短波跳频通信系统的调制可采用四相差分键控DQPSK 调制方式。由于短波信道仅在10kHz(白天)或2.5kHz(晚上)的带宽内是近似静态的[1],所以跳频信号差分相位调制信息为同一频率前后相邻出现的相位差。根据文献[2],我们选择系统参数为:①跳频频率间隔为3kHz;②跳频带宽1.536MHz,共512个频点;③跳频数为64,根据信道质量从512个频点中选取;④跳频速率为2560跳/秒(频隙时间390.625μs,信号时间333.333μs,频率变换时间57.292μs);⑤信息比特速率5120bit/s。图1为信号的FH/DQPSK调制过程框图。在时钟的同步状态下,根据跳频码从64个相位存储器中取出同一跳频码上次出现的信号的绝对相位,再加上差分相位作为当前信号的绝对相位,并存储到该相位存储器中。同时跳频码控制输出信号频率字,把相位字和频率字写入DDS相应的存贮器以更新频率和相位,启动DDS工作。其中,差分相位由每两个信息比特决定。如采用 π/4DQPSK方式,则信息序列与相位变化关系如表1所示。


表1 π/4 DQPSK系统编码与相位变化的关系

二进制信息序列相位变化△фk
00π/4
013π/4
11-3π/4
10-π/4

2 DDS技术

本文所采用的AD7008[3]是AD公司生产的CMOS型DDS芯片,该芯片功能较全、性价比高、容易开发、实现的成品性能较好。其相位累加器为32位,频率分辨率可达0.012Hz。频率转换速度与频率间隔分辨率 之间不相干,频率变换的速率仅受限于器件响应速度的快慢,通常为几十纳秒。由于实现了高度数字化、集成化,输出频率的稳定度达到晶振频率稳定度的数量级。它适用于频率调制、相位调制、正交调幅调制(其它一般DDS芯片所不具备)和驱动倍频锁相环构成分辨率高、转换速度快的频率合成器等场合。DDS的实际输出最高频率约为时钟频率的1/3,输出频率越高,噪声功率越高。由文献[3]可知,在时钟频率fc=50MHz,输出频率f0=5.1MHz情况下,其最大谐波频率为15.3MHz,幅度低51.8dB,一般可通过低通滤波器滤除。对于本文跳频带宽为1.536MHz(小于5.1MHz)的系统,调制是可以直接用AD7008芯片予以实现的。

本系统的调制电路是用51系列的单片机89C51 控制DDS芯片AD7008 来完成的。如图2所示,通过D0~D7数据总线在WR、CS的控制下,将数据控制字首先写入AD7008的并行寄存器,然后在LOAD和TC0~TC3的控制下按表2所示将并行寄存器数据转载到功能寄存器。

表2 AD7008外部控制逻辑(并行方式)

TC3TC2TC1TC0LOAD源寄存器目的寄存器
XXXX0----
00XX1并行寄存器命令寄存器
10001并行寄存器频率寄存器0
10011并行寄存器频率寄存器1
10101并行寄存器相位寄存器
10111并行寄存器IQ寄存器

使用AD7008内部参考电压(VREF=1.27V),RSET≈390Ω时为满刻度电流输出。在管脚IOUT与地之间接入50Ω电阻,输出信号峰-峰值为1V的跳频信号。P1.0,P1.1分别控制芯片复位和频率寄存器的选择。根据电路,RAM6116地址为0000H~07FFH,并行寄存器地址为4000H,命令寄存器地址为8000H,频率寄存器0地址为0A000H,频率寄存器1地址为0A800H,相位寄存器地址为0B000H,IQ寄存器地址为0B800H。相位寄存器的值为差分相位,0、π/

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top