微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 嵌入式设计 > 基于DSP的PMSM矢量控制系统的设计与研究

基于DSP的PMSM矢量控制系统的设计与研究

时间:04-09 来源:互联网 点击:

摘要:为实现对永磁同步电机(PMSM)的最优控制,设计了一种以数字信号处理器(DSP)为核心的控制器,深入分析了控制器中对电机运行精度影响较大的几个模块,并进行了优化。采用空间矢量脉宽调制(SVPWM)技术完成了系统的硬件和软件调试,实验结果验证了所设计控制器的可行性,并能满足PMSM的高性能控制要求。
关键词:永磁同步电机;矢量控制;空间矢量脉宽调制

1 引言
PMSM具有转动惯量小、功率密度高、响应速度快等优点,在高性能的电机控制领域中得到了广泛应用。随着半导体技术的发展,电机控制的数字化已成为主流趋势,而高性能的电机控制算法都是通过主芯片实现的。目前,在电机控制领域中,最具代表性的DSP是TMS320F2000系列,其中TMS320F12812是该系列中的一款主流32位定点DSP,与TMS320F2407相比,它具有更丰富的硬件资源和更快的计算速度,可用于实现高性能电机控制系统。在此采用TMS320F2812设计了一种PMSM控制器,利用C语言编程进行软件设计,实现了系统速度、电流双闭环控制。

2 永磁同步电机矢量控制系统
矢量控制的基本思想是通过坐标变换,将电机定子电流分解成产生磁通的直轴分量和产生转矩的交轴分量,并使两分量相互垂直,彼此进行独立调节与控制。id=0控制法是目前交流电机控制中应用最广的矢量控制法。由于定子电流中只有交轴分量,没有直轴去磁分量,因而不会产生去磁效应,且电机定子磁链空间矢量和永磁体磁链空间矢量正交,从电机端口看,此时的交流PMSM相当于一台他励直流电机。该系统在矢量控制的基础上采用SVPWM技术来控制逆变器的输出电压,电机所有电流均用来产生电磁力矩,电机控制效率高,转矩特性好,可获得很宽的调速范围,PMSM矢量控制系统基本框图如图1所示。

3 系统硬件设计与分析
PMSM调速系统硬件电路如图2所示。主要包括主电路、控制电路、功率驱动电路、检测及保护电路等。主电路包括整流电路和逆变电路,其中整流部分由4个二极管构成整流桥实现;逆变电路是由6个IGBT元件构成的开关电路,可输出相位差120°的三相对称电压。


控制电路由上位机、TMS320F2812、光电编码器、霍尔传感器等组成。其中上位机与DSP通过JTAG模块连接,可实现两者间的实时通信:QEP模块连接光电编码器,用来捕获电机转速信息,并由数码管模块显示;A/D模块与霍尔传感器相连,用来检测电路中电压、电流值的大小;事件管理器模块输出6路PWM波,经光耦隔离、功率驱动电路,输出到逆变电路的6个IGBT开关管。
3.1 A/D采样精度分析
TMS320F2812片内A/D模块分辨率为12位,但在实际应用中精度并不高。理想情况下,A/D的采样结果为:y=Gx+b。其中,y为采样结果;x为输入电压;G为增益,G=1;b为偏置,b=0。但是在采样过程中,G并不等于1,b也不等于0,其偏差如图3所示。

由于A/D采样结果的准确性将直接影响电机控制性能,因此有必要采用矫正电路来提高其转换精度,该系统设计的矫正电路如图4所示。

对于同一个排序器。其8个通道的G和b是相同的,如果给定两个通道(如A6,A7)的输入电压,则有:y6=Gx6’+b’,y7=Gx7+b’。由图4可知,A6,A7的给定是通过稳压管和电阻分压得到的,其电压值是已知的,意即x6和x7是已知的。y6和y7可从A/D结果寄存器中读取,由y6和y7,的表达式可以计算得到:

得到G’和b’后,就可通过y=Gx+b计算矫正后的采样结果。
3.2 相电流检测及过热保护模块
为提高控制器的电流检测精度,该设计采用CS010GT霍尔电流传感器进行电流采样。CS010GT能在电隔离条件下测量直流、交流、脉冲以及各种不规则的电流,其初级额定输入电流,Ipn=10 A,输入电流与输出电压的关系如图5所示。

为了减少高频信号以及负载效应对系统的影响,在霍尔电流传感器的输出端设计有电压跟随器。当电机长时间高速工作时,如果电路的散热条件不好,就会烧毁元件甚至造成更大损失。该设计中针对容易烧毁的大功率IGBT元件,在电机驱动板上安装了散热片,同时为了实时检测芯片温度,采用高精度温度传感器芯片LM358CAZ设计了过热保护电路,如图6所示。LM358CAZ芯片可直接采样摄氏温度,计算较方便,其额定温度范围为-55~150℃,非线性误差较小。

3.3 SVPWM实现模块
SVPWM较传统SPWM技术,具有谐波含量少、开关损耗小、直流电压利用率高等优点,在如今交流电机数字化控制中应用越来越广泛。采用TMS320F2812实现SVPWM非常方便,而且输出波形精度高。根据用户配置,DSP内部定时器能生成多种方式PWM波形,控制器生成PWM的硬件电路如图7所示。

要生成SVPWM波

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top