射频IC-MFRC522在智能仪表中的应用
整,但要注意元件精度及材料一定要符合设计要求,诸如:L01、L02应选用1.0μH±10%的滤波电感,C01、C02应选用NP0材料±2%的电容。 3.4 天线设计 实现与非接触卡的通讯,智能仪表必须具有发射和接收射频信号的天线。针对不同应用可设计相关天线。天线设计步骤为:设定智能仪表的工作环境;优化天线与非接触卡的耦合系数;确定天线线圈和匹配电容。 非接触式IC卡天线利用电感耦合产生磁通,磁通用于向IC卡器件提供电源,并且可在两者之间传输数据。因此要求天线线圈的电流最大,产生最大磁通量;功率匹配,最大限度使用磁通量的可用能量;足够的带宽以无失真地传输数据调制的载波信号。 实际的天线电感和电容值取决于天线电阻(PCB类型)、导体厚度、线与线之间的距离、保护层材料、附近的金属或者铁氧体等因素。天线设计完成后,以能准确通讯的最远距离为标准,调整匹配电容。匹配电容也应采用NP0材料。 3.5 MFRC522识卡的软件设计 MFRC522能渎写所有符合ISO/IEC 14443TYPE A接口的非接触卡,其识卡过程如下: (1)MFRC522复位后,即可对卡操作。 (2)复位应答。当卡片进入读写器的操作范围时,读写器以特定的协议进行通讯,从而确定该卡是否为S50射频卡,即验证卡型。 (3)防冲突闭合机制。当有多张S50卡在读写器的操作范同内时,防冲突闭合电路首先从众多卡片中选择其中的一张作为下步处理的对象,而未选中的卡片则处于空闲模式以等待下一次选择,该过程返回一个被选中卡的序列号。 (4)选择卡片。选择被选中卡的序列号,同时返回卡的容量代码。 (5)三次互相认证。选定要处理的卡片后,读写器可确定访问的扇区号,并对该扇区进行密码校验,在三次互相认证后就可以通过加密流进行通讯(而在选择下一个扇区时,必须对新扇区的密码进行校验。)。 4 结束语 随着射频卡应用普及,其各项技术指标也得到改善,具备广泛应用的技术能力。MFRC522在智能仪表以及各种手持设备上的应用,以其低工作电压和低功耗的优势处于领先地位,因此,MFRC522具有较大的发展空间。
- 校园一卡通系统中RFID读写器的设计(09-12)
- 基于MFRC522的热量表预付费模块设计(05-08)
- 如何加速FF现场总线自动化智能仪表开发进度(12-19)
- 基于现场总线的智能仪表温度控制系统的设计(12-19)
- 智能仪表帮助三菱化学提高维护效率(12-12)
- 基于单片机的智能仪表温度控制系统的设计(12-02)