电视监控系统中CAN总线网络应用
随着计算机技术,通信技术和电视技术的发展,在许多场合,为了监视和控制现场的运行状况,提出了电视监控系统,用以实施集中控制,尤其是控制点与现场较远,需要的监视点比较多时,控制点和各个监视点形成多微机系统。随着现场总线技术的发展,CAN总线以其独特的优点,开始登上舞台。CAN总线的传输距离可以达到10km,数据传输速率高达1Mbit/s,很好的解决了本电视监控系统中的要求传输距离远、实时性强的问题。同时,CAN总线在报文传送中不包含目的地址,以全网广播为基础,各接收站根据报文中反映数据性质的标识过滤报文[1]。这种报文中不含目的地址的报文格式缩短了帧的长度,减少了传输中地址匹配的麻烦,提高了传输速率。而这种全网广播形式,使各个节点站没有主从之分,可以平等的向其他节点发送报文,减轻了将作为主节点的节点负担,也避免了主从机之间的通信。这种多主式总线局域网实现了本电视监控系统的实时、较高数据要求的系统功能。
1. 多通道多微机电视监控系统简介
如图1所示,本系统设有64台彩色摄像机,每台摄像机配有可自动调整的镜头和云台,每个单元作为CAN总线网络的一个节点,64个节点构成被控单元。这64台设备分布在室外、室内、广场、站台等场所。其中每一个节点以主控室为中心,通过CAN总线和64条视频电缆与主控制室的上位机连接。
主控制室为系统控制中心,在CAN总线网络中充当上位机的角色。本系统虽为多 主式控制系统,但需要一个总控制中来对各个子控制室进行协调和管理。主控制室主要由一个带有CAN接口的上位机构成,还有一个用彩色监视器组成的电视屏幕墙,作为系统的总监视。其余个控制台设1太彩色监视器作为辅助监视。
本系统可连接4个独立的控制台终端,每个控制台终端与彩色摄像机和云台的角色一样,构成一个CAN总线网络节点。4个控制台形成主控单元,但必须听从上位机主控室的协调。它是编程,设定摄像机控制的发令终端。4个控制台分别设在各楼的主管部门,与主调度室最远可达1km。
2 通信电路设计原理
2.1 云台、镜头控制器
云台有上、下、左、右旋转控制,是通过控制2台电机正反转来实现的,镜头有光圈大、小,焦距远、近,变倍大、小6个通电和断点开关控制。此外,还有雨刷动作控制。
如图2所示,89C51作为CPU控制器,TXD和RXD两条通讯线分别经过光隔和CAN控制器连接,通过CAN总线收发器连接到CAN总 线上,完成与带有CAN接口卡的上位机的连接电路,使用CAN总线协议。另外,2732是一个EPROM,存 放控制程序。P1口P3口作为11个开关量。P1口除了作为8个开关量输入输出以外,还用2个74LS244实现8位拨码开关作为输入64个控制器的硬件序号设定。
2.2控制台电路设计
控制台电路基本有以下三部分组成:
1. 键盘接口。采用行输出列输入程序实时扫描方案。74LS373作为行输出接口,74LS244作为列出入接口。按键分为三类:0~9为数字键;一类功能键,包括动作、执行、左移、右移、锁定、循环、方式、读出、时间等功能;另一类就是摄象机动作控制键,包括了上、下、左、右、光圈大、小,焦距远、近,变倍大、小,雨刷动等。
2. LED数码显示接口。
3. 拨码开关接口。参考图2。
4. 发光二极管显示灯。作为运行状态指示。
5. CAN控制单元接口。这是一个与云台、镜头控制电路中相同功能的接口。
2.3主控制室电路设计
从图1可知,该系统所形成网络结构为分布式网络。接口电路有两种接口,视频矩阵切换控制电路和多路控制的串行接口——-CAN总线。主控室的上位机通过CAN接口卡(以SJA1000为控制器)实现与下位机节点的连接。视频矩阵切换控制电路主要是接收摄像机与云台传送过来的视频图像,并将视频图像输出到各个子控制室。由于视频信号要经过CAN总线的数字通道传输,必须通过A/D、D/A转换,这样增加了整个系统的设计复杂度。所以,在进行视频信号的传输时,采用了专用模拟通道——-视频电缆。为提高其工作效率,采用D S87C520单片机来控制DG884芯片进行图像信号切换。
1. CAN接口卡
这是一个位于上位机的接口卡,用来连接下位机的单片机与上位机的PC机。这个卡采用的控制器收发器均和云台、镜头控制器电路以及控制器电路中的一样,下面详细的介绍这个接口的典型电路。
该接口电路主要微控制器89C52、PHILIPS公司的CAN控制器SJA1000 及收发器 PCA82C250组成。CAN 控制器功能像是一个时钟源复位信号,由外部复位电路产生。SJA1000 的片选由微控制器的P2.7口控制[3]。
PCA82C250与CAN总线接口部分采用了一定的安全和抗干扰措施。82C250的CANH和CANL引脚各自通过一个5欧
- 用PC和PLC组建的监控系统(06-04)
- 通过RTFL实现快速实时通信(12-20)
- Matlab GUI的上位机与智能车的两种实时通信(01-07)
- PC机与多台单片机实时通信系统的设计与实现(01-19)
- SHARC DSP与SJA1000的CAN总线接口设计(03-14)
- 基于DSP与SJA1000的CAN总线系统设计方案(07-15)