应用单片机的控制电路相关情况解析方案
引 言
远程控制技术又称为遥控技术,是指实现对被控目标的遥远控制,在工业控制、家用电器、无线电运动以及儿童玩具等领域都有非常广泛的应用。遥控技术可以分为单通道遥控和多通道遥控,也可以分为开关型遥控和比例型遥控。
本文主要介绍了使用到单片机部分的控制电路,包括发射机电路和接收机电路。发射机采用电位器分压作为比例控制信号,由4路A/D电路转换为数字信号,各个通道数字信号连同两路开关量由单片机进行多通道编码,编码信号由串行口送出,最后由发射模块发射。接收机主要负责把收到的信号放大并从中解调出编码信号,最后由伺服机把接收机收到的电信号转换成相应的机械动作,由此实现方向和速度的控制。
外观上,在遥控器的发射端应该有带旋钮的比例表盘,把5 V电压平均分成360°,每一个小的度量单位就代表一定的电压值,当旋钮转动一定角度时,也就是输入给发射单片机一定的电压值,与此同时,发射单片机一直以一定的时间间隔去查询当前的速度并读入到单片机内部,并根据计算公式计算出模型应该前进的距离或者当前应该的速度且根据此值设置相应的计数/定时器的初值,然后由系统外部驱动电路(伺服机)把接收单片机收到的电信号转换成相应的机械动作,即前进一定距离或者作加减速运动;当定时器溢出产生中断以后,外部相应的驱动电路也几乎同时发出控制信号控制模型停止任何动作。
使用比例遥控的优点有很多。例如:控制灵活;可以调整遥控的距离且调整的最大距离比一般遥控远;可以根据使用者的意愿实现模型的速度改变;线路简单,抗干扰能力强;伺服机构(包括齿轮箱和伺服马达)简单等等。
1 比例遥控设备的基本原理
一般比例遥控系统的功能框图如图1所示。
图1(a)中,键盘用于产生发射端控制信号;编码器对控制信号进行编码;显示器显示受控对象及其受控状态类别;发射机将操纵指令转换为带有控制信息的无线电信号并将此信号进行功率放大,以满足发射功率的要求。
图1(b)中,解码器将编码信号译成控制信号;控制器对受控对象实施控制;接收机接收发射机发出的无线电信号,同时将接收到的信号放大并从中解调出编码信号,一般和发射机配套使用。由于接收机是装在模型上的,一般都应该尽量做到小巧,同时还应具有很高的灵敏度,能接收较远距离发射的无线电信号。
遥控设备的基本工作原理是:操纵者通过手中的遥控发射机(拨动发射机上的旋钮或者摇杆)将控制模型前进、后退、加速或减速的指令变成电信号并将其发射到空中;模型上装载的遥控接收机收到这些电信号并由伺服舵机转换成相应的机械运动,从而实现对模型的遥控。
2 单片机比例遥控系统的具体设计
无线比例遥控系统主要由发射和接收两个部分组成,发射部分完成对遥控指令的发射,接收部分完成对指令的实施。在设计时可将其分开设计。
2.1 发射电路
图2为使用STCl2C2052AD单片机设计的比例遥控系统发射机的主电路。由于使用了单片机,使整个电路变得非常简洁。P1口为比例遥控信号的输入端;通过电位器分压得到比例控制信号,由4路A/D电路转换为数字信号,各个通道数字信号连同两路开关量由单片机进行多通道编码,编码信号由串行口送出,最后由发射模块发射。如果需要设计更多通道的比例遥控系统,可以利用其余没有使用到的P1端口,外接电位器进行相应的功能扩展。当没有控制信号时,P1口均为高电平。由软件控制将P1口的控制信号(低电平有效)送到单片机内部进行相关处理。
STCl2C2052AD是20脚封装的单时钟/机器周期的兼容8051 RISC型CPU内核的单片机。它是本设计的核心器件,其速度比普通的8051快12倍;功耗低;片上集成256字节的RAM;15个通用可编程I/0口,可以设置成4种模式——准双向口/弱上拉、推挽/强上拉、仅为输入/高阻、开漏(其中复位后为准双向口/弱上拉模式);片内有EEPROM功能;共有2个16位定时器/计数器;内部还集成了RC振荡器,在精度要求不高时可以省略外部晶振;具有较宽的操作电压范围以及独立的片内看门狗定时器;P1.7~P1.O共8路高精度的高速电压输入型8位A/D转换器,速度可以达到100 kHz,可用于温度检测、电池电压检测、频谱检测等等,上电复位后P1口为弱上拉型I/0口,用户可以通过软件设置将8路中的任何一路设置为A/D转换(不需要作为A/D使用的端口可以继续作为I/O口使用,需作为A/D使用的端口要先将其设置为高阻输入模式或者开漏模式)。本设计中的单片机还可以由其他同类型的20脚封装的51系列单片机代替,设计方法多种多样。
2.2 接收电路
接收电路主要作用是将发射机发射出的已调的编码指令信号接收
情况 解析 方案 相关 电路 单片机 控制 应用 相关文章:
- 单片机与一个PCI设备间通信的情况解析方案(06-18)
- 常见Linux紧急情况处理方法(04-13)
- Keil C51中对双数据指针的支持情况分析(03-27)
- Keil C51中对双数据指针的支持情况及代码生成(12-09)
- 基于TI最新多核DSP SoC架构解析(05-12)
- ARM linux解析之压缩内核zImage的启动过程(11-10)