嵌入式Linux通信中构件技术应用研究
摘要:本文首先介绍了嵌入式Linux 网络实时通信的现状及构件技术的特点,然后以嵌入式服务器的网络实时通信应用为基础,将构件技术引入Linux 的TCP/IP 协议设计中,给出了一种构件化TCP/IP 协议栈中主要协议的方法,并对构件化的协议进行测试,测试表明该方法为嵌入式Linux 网络实时通信提供了一种新思路。
1 引言
现今较为流行的操作系统Linux[1],本着开放、自由的精神吸引了全世界的目光,但将它应用于嵌入式实时环境还有许多缺点。特别是在运行内核线程时,Linux 关闭中断,而且分时调度虚拟文件系统的时间不确定性、缺乏高精度的计时器等问题都是需要解决的,所以在Linux 上进行实时改进,建立具有实时应用能力的操作系统是现代嵌入式操作系统的解决方案,也日益成为人们关注的课题。
目前,大多数嵌入式设备都具有存储容量小、处理速度慢和网络应用单一等特点,在这样的嵌入式系统中应用传统的单块式网络协议栈就存在问题:一是如果协议栈中某个子协议功能需要升级,就要升级整个协议栈甚至重新编译全部内核文件,工作流程复杂;二是协议栈不够灵活,不能根据嵌入式系统对网络通信的实际需求配置其内容。
2 构件技术介绍
早在60 年代,“软件构件”与“软件组装生产线”思想在国际北大西洋公约组织软件工程会议上被提出来,从此,采用构件技术实现软件复用,采用“搭积木”的方式生产软件,成为软件业长期的梦想。然而,由于技术水平的限制,在很长一段时间内,构件技术只是作为一种思想存在,直到CORBA 、J2EE、.NET 出现,中间件兴起以后,构件技术才逐渐走向现实。
构件最大的特点是可以不断复用、降低成本、缩短开发周期。从构件技术的实现来看,它规定了一种普遍使用的抽象“标准”,即规定了一组相同的结构类接口来实现动态交流。通信协议引入构件技术设计,可提供代码的可重用性,使程序开发周期缩短,分工更加明细,使整个协议体系具备了更好的可配置性、高效性、可重用性、可扩展性和可表达性。从而解决了网络通信中存在的四个基本问题:基本的构件互操作性、协议版本升级、实现语言无关性、透明的跨进程互操作性。
软件构件技术[2]是建立在面向对象技术之上的,它提供了比面向对象技术更为高级的抽象,通常是对一组类进行封装,通过固定的接口来调用该构件所提供的方法。构件技术成为了嵌入式操作系统和嵌入式应用软件的发展趋势。利用构件技术把单块式的网络协议分割成多个独立的构件,每一个构件都可以被新的构件更新、替换,一组相关的构件提供特定的服务。因此,系统就可以通过选择相应的网络协议构件进行组装来通信。
通信协议构件化
随着嵌入式系统与网络的日益结合,在嵌入式实时操作系统中引入TCP/IP 协议栈,以支持嵌入式设备接入网络,成为嵌入式领域重要的研究方向。但是传统的TCP/IP 协议实现存在实时性能较差,不能满足实时性要求高的嵌入式领域;传统TCP/IP 的实现过于复杂,需占用大量系统资源,而嵌入式应用的系统资源往往都很有限;传统的TCP/IP 协议系统是基于单块式体系结构的,即嵌入式实时操作系统中引入的协议是以单块方式设计并加以实现的,随着网络技术的不断发展,以及一些新应用不断增长和变化的要求,这种通用的单块式结构的协议往往不能满足需求。因此,需要把传统TCP/IP 在不违背协议标准的前提下加以改进实现,使其实时性得到提高,占用的存储空间尽可能少,从而满足嵌入式应用的要求。
Linux 可针对用户的需求,动态载入和卸载操作系统构件,这种模块化机制[3]为通信协议构件化提供了前提条件。用户可以根据需要,在不对内核重新编泽的情况下,能将模块动态地载入内核或从内核移出,内核可以仅实现一些基本功能,系统的可扩展性功能就留给模块来完成,从而使内核的大小和通讯量都达到最小。因此,在Linux 中实现协议构件化可以依赖模块化机制,协议构件由Linux 模块来实现,模块能动态地载入内核或从内核移出,而不需要对内核重新编译。
本文针对嵌入式服务器的网络实时通信的应用,以经过实时改进和裁剪的Linux 操作系统作为协议构件化的平台,对的TCP/IP 协议栈进行构件化。
1 通信协议构件化原理
2 通信协议分解
为了使协议构件具备动态链接、信息封装、统一接口等特性,首先要合理分解通信协议,这关系到通信协议构件的粒度。从粒度上来看,构件的粒度越小,协议划分越细,协议构件越多;构件粒度越大,协议划分越粗,协议构件越少。
协议构件粒度的大小,决定了协议构件模块化、信息封装性
- 总线技术的应用浅析(12-16)
- CAN总线技术的应用与发展(12-12)
- 嵌入式系统的网络互连技术应用分析(04-18)
- 基于单片机的图像处理器6538的接口技术应用(01-02)
- 嵌入式应用中的互连技术应用(07-12)
- 基于DSP的音频会议信号合成算法研究(05-10)