微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 嵌入式设计 > 车载GPS导航系统设计

车载GPS导航系统设计

时间:08-13 来源:互联网 点击:

图二. 具成本效益的GPS接收器架构,以STA2056为例
 

如果强调设计上的弹性,通常会选择射频与基频分离的方案,在基频元件方面还会嵌入Flash的记忆体,并支援较丰富的匯流排介面。以ST的STA2058为例,它整合了32位元微处理器ARM7TDMI和一个嵌入式快闪记忆体(embedded flash),并广泛支援CAN、SPI、UART、I2C、USB等介面,以及RTCA-SC159/WAAS/EGNOS等GPS系统。此外,STA2058EX更拥有外接记忆体介面,可以用作远端资讯处理服务平台,允许免黏接逻辑(glueless)而与外部装置(如:GSM/GPRS模组、晶片卡、音频功能DSP)相连,非常适用于车辆应用。其架构请参考(图三)。
 

图三. 具弹性的GPS接收器架构,以STA2058为例

在系统设计上还有一些需注意的要领,包括功耗的降低和杂讯、干扰的抑制。以GPS接收器来说,相关器的运作是产生功耗的主要来源,因此最好能分别控制每个相关器通道,也就是当不需要启动所有通道的时候,系统能自动调整为仅启动所需的相关器通道,以降低功耗。此外,透过备用电池的使用,能将电源电压降低,这也有助于节省功耗。

从高频转低频的过程,是杂讯产生的主要环节,在此过程中必须妥善抑制杂讯的产生,例如将SAMP CLK的讯号谐波降到最小,以免混杂在中频(IF)链路当中,这可透过在射频前端与相关器之间配置适当的电阻器来达成抑制的目标。此外,各单元在电路上的佈局和佈线,也会影响干扰的状况,因此需要进行妥善的规划。

GPS天线的需求特性
GPS天线也是决定GPS效能表现的关键。GPS卫星讯号的背景噪讯为-136dBW,为避免干扰,国际电信法规规定卫星传送之讯号不得大于-154dBW,因此GPS的讯号实际上相当的弱,因此接收天线的灵敏度必须相当的高,这和天线的大小及形状密切相关。可用于GPS的天线种类包括片状天线(Patch)、螺旋式天线(Helix/Spiral)和平面倒F型天线(PIFA)等,其中又以Patch及Helix使用最多,请参考(图四)。由于GPS的讯号属于圆极化波,所以GPS接收天线也必须採圆极化的工作方式。
 

图四. 各种适合GPS的天线类型
 

平板天线的好处是其耐用性及相对容易制作,成本也较便宜。不过它具有明显的方向性,平板要面向天空才能得到较好的接收效果。这种方向性会带来使用上极大的限制;此外,它虽然能顺利接收到正上方的卫星讯号,但若没有撷取到低角度的卫星资讯,误差也会相对较高,精确度则会下降。

较先进的作法是採四臂螺旋天线(Quadrifilar Helix Antenna),它拥有全面向360度的接收能力,使天线在任何方向都有3dB的增益。这让GPS接收器能以各种角度摆放,而且能接收到很低角度的卫星讯号。此外,更佳的作法再导入Balun的电路设计,如此一来就能有效隔离天线周围的噪讯,能容许各种功能的天线并存于极小的空间中而不会互相干扰,很适合手持设备的天线设计。不过,此类天线的成本仍然偏高。

前瞻性技术一:DR
在车载的导航使用中,常会因为遭遇到环境上的遮蔽因素而造成导航工作无法正常运作。在高楼林立的巷道中收讯状况往往极差,当行进隧道中时,那更是完全没有讯号可用。在这个时候,就可以透过方位推估(Dead Reckoning,DR)技术来做为暂时的导航工具。

DR的技术原理是透过能感测或量测距离及方向改变的装置,来估算出车子移动位置的改变。在正向的行进距离通常採用里程计(Odometer)或加速度计(Accelerometer)来进行量测;转动角度则使用磁罗盘(Compass)、陀螺仪(Gyrometer)或差分里程计(Differential Odometer)来量测;高度上的变化则需使用气压计(Barometer)。请参考(图四)的整合设计实例图。

里程计是每台车子中皆有的装置,GPS接收器可透过CAN Bus来连结里程计以进行量测,但里程计的缺点是会因使用时间而降低其准确性。较先进的作法是採用MEMS技术的加速度计和陀螺仪,它们的体积小,也容易进行系统整合,不过,一分钱一分货,精确度高的MEMS元件也需要较高的成本。此外,在实用上,要提升DR系统的精确性,还得时常进行线上感测器的校准,这时就得靠GPS的定位讯号来修正DR感测器的参数项目。
 

图五. GPS与里程计及陀螺仪的整合设计实例

在短时间内,DR的正确性相当高,甚至可以高于GPS,但当使用时间久了,DR的误差累积效应会愈来愈大,导航的精确度就会大幅下降,这时必须回归到GPS系统来找出绝对的位置,才能再次使用DR。DR和GPS可说是相辅相成的车载导航系统,但目前商品化的产品仍然不多,主要的瓶颈在于DR感测器的准确度、成本,以及与导航系统整合的演算法开发上。
 

前瞻性技术二:Galileo
大家所熟知的GPS,其实是由美国军方所佈建的全球卫星导航系统。目前有另一套相似的系统正在筹建中,也就是欧盟主导的Galileo计画。Galileo的技术部分是由欧洲太空总署(ESA)所主导,但它的营运单位是属于民营组织。第一颗卫星(GIOVE-A)已于2005年底成功发射升空,预计2008年将正式开放商业使用。Galileo准备发射30颗卫星到天空,让任何地点都能看到4颗以上的卫星;不过Galileo的卫星轨道与赤道面的倾角较大(56度),因此对北欧等高纬度地区能提供更完善的服务。

由于这是属于民营的组织,因此获利是很大的考量,这也是为何Galileo规划了三个不同的频率,包括Lower L-band的E5a和E5b,Middle L-band的E6和Upper L-band的E2-L1-E1,以提供差异化的收费服务。它提供四种服务等级,即开放性服务(OS)、生命安全服务(SoL)、商业服务(CS)和公用法规服务(PRS),其中SoL和CS是要付费的,免费的民用工作频率在1560 – 1591 MHz,可与GPS的1575.42 MHz使用相同的天线进行接收。

Galileo採用特殊的调变技术,能减少多重路径的干扰,因此能提升商用上的精确度,在水平方向的精确度可达4公尺,垂直方向则为8公尺。它与GPS及GNSS等系统具有互操作性,一个整合GPS和Galileo两大系统的双工模式接收机,其精确度还能够再提升,水平方向可达3 – 4公尺,垂直方向可达6-8公尺。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top