微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 嵌入式设计 > 基于单片机电压采样的功率因数在线检测

基于单片机电压采样的功率因数在线检测

时间:10-16 来源:互联网 点击:

5次,然后将这些采样值进行排序并选取中间值。这种滤波方法对滤除脉冲性质的干扰比较有效。

(3)运算子程序

首先将经过数字滤波后的电压 U1、U2、U3读入,然后通过乘法指令完成平方运算,得到U12 、U22 、U32 ,再经减法运算、乘法和除法运算最后得到

 ,即得到被测功率因数。

通信子程序的任务是完成串行通信的初始化。PIC16F877单片机带有的同步异步接收发送模块(USART),它是利用 C口的RC6、RC7两个引脚作为二线制的串行通信接口,为使 USART分别工作与发送和接收状态,编程时首先将 USART的接收状态和控制寄存器的 bit 7和 TRISC寄存器的 bit 7均置为1,把 TRISC寄存器的 bit 6均置为0。其次,要使 USART工作在异步通信方式,还必须设置发送和接收速率即波特率。最后通过对发送状态和控制寄存器 TXSTA的 bit 4设置为“0”,从而使 USART工作于异步通信模式。

5.试验及结果分析

为验证功率因数在线测量的精度,作者搭建了如图 4所示的试验平台,图中 COS?是准确等级为 0.2级的单相功率因数表。试验时分别采用白炽灯、电风扇两种不同负载作为测量对象进行了功率因数测量试验,并将实验结果与功率因数表的读数进行比较。

图 4 试验电路示意图图中

S1为电源开关,S2为转换开关,当 S2合在下边位置时可得到功率因数表直接读数;当 S2合在上边位置时可得到在线测量电路的功率因数测量值,试验结果与计算值如表 1所示。

由表 1可知,采用测量电路得到的测量值与功率因数表的读数非常接近,说明该测量电路具有较好的测量精度。白炽灯为纯电阻负载,而电风扇为电感性负载,试验表明该功率因数测量电路具有较好通用性,既适用于电阻性负载也适用于感性负载。

5 结束语

基于电压采样来测量功率因数的方案,简化了功率因数在线检测电路的结构、降低了成本,提高了检测精度。并且这种检测功率因数的思路还具有很好的实用价值,因在实际中电压表比功率因数表更为常见,当手头没有功率因数表的情况下,就可用电压表测量相应的 3个电压,通过公式( 2)计算也可得到负载的功率因数,解决了无功率因数表就无法测量功率因数的困难,给功率因数的测量带来了很大的方便。但该测量电路也存在不足之处,测量时需要串接一个附加可调电阻,因而测量显得不太方便,另外还会影响负载的工作,因此在使用时应尽量使阻值调小些以得到适当的电压为宜,通过试验我们认为该电压调到 10V左右即可,这样既能满足测量要求,又不至于对负载造成太大影响。

本文作者创新点:通过对被测电路电压采样,并经过计算即可得到被测电路的功率因数,简化了功率因数测量电路结构,提高了功率因数的测量精度。克服了传统的功率因数测量时需要对电压、电流进行检测,再经过电压、电流波形变换得到电压、电流的相位差,最后才能得到被测电路的功率因数复杂过程。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top