基于MCU的智能流量监控系统设计
理,因此我们引入了小信号处理电路。还有对各种信号的放大倍数要求也不一样,我们采用了程序适当的控制增益的方法。 由前面的内容可以知道,在系统中涉及的信号类型较多,各种信号范围各异,由于体积的限制以及考虑到成本,故在多路信号的检测过程中,多个通道共用一个放大器。信号经放大处理后送至A/D转换器,由于各个输入量传送到放大器的信号电平不同,放大器的增益也应不同。一般情况下,应使被转换量的数值大小落在A/D转换线性特性区间内,并尽可能使模拟量信号输入采用小放大倍数,即根据未知参数量值的范围,自动地选择合适的增益和衰减,以切换到合适的量程。量程自动设置的方法是在采集通道中设置可变增益放大器,借助量程转换开关,控制其通断,获得所需的量程。 系统中此处电路的程控放大采用八选一多路模拟开关4051和运放OP07组成。多路开关4051用来改变放大器的增益,根据输入信号的大小,由单片机控制4051的选通,改变其反馈电阻的大小,从而达到改变放大器增益的目的,实现量程的自动切换。 模拟开关部分4051和运放OP07完成将信号输入前端测量的热电偶、热电阻、电流、电压信号全部转换成0-1V内的小电压信号。程序自动完成对信号的识别后,控制第一片八选一模拟开关4051完成对送往放大器信号的选择,程序通过对第二片4051的控制完成对放大倍数的选择。 4 功能电路 信号的测量只是流量监控的前期工作,要实现流量监控的智能化就要设计功能完整的电路,完成数据A/D转化、根据数学模型进行控制处理、参数设置及结果显示、打印及输出等。 4.1 系统电源 为了减轻系统硬件重量和体积,同时综合考虑系统对电源的要求,需要双5V电源供电。对硬件电路参数分析,经计算选用+5V(1A), -5V(200mA)非对称高频电源模块HAW6-220D5F。其转换效率典型值为80%;开关频率100KHz;具有保护(过压,过流,过热,短路保护)和自恢复功能。 4.2 打印接口和输出 另外系统根据设计要求设计了打印机接口和输出接口。打印机接口采用RS232协议,可外接一个微型打印机。变送输出采用一般的数模转换器DAC0832,该芯片与微处理器完全兼容,具有8位分辨率。该芯片以其价格低廉、接口简单、转换控制容易等优点而应用广泛。采用DAC0832输出0-l 0mA、4-20mA, 0-5V, 1-5V信号。当需要输出信号为电压信号时,可将电流短路环短接。 4.3键盘与显示 在流量监控系统中由于要显示的数据位数较多,而单片机要实时的采集和处理现场数据,因此显示不能占用太多单片机的时间;同时系统的参数输入需要通过按键来实现,这就要求设计键盘和显示电路。系统中采用专门的显示驱动电路ZLG7289来驱动共阴极数码管,该芯片同时也可以接64个按键,如果有键按下,那么该芯片会输出中断信号,访问该芯片则会得到一个编码好的按键值,这样就可以进一步可以节省单片机查询按键的时间,而且为处理按键带来了极大的方便。 4.4 日历时钟电路 为了使系统能够记录发生的意外事件时间和打印当前时间下的累积流量和各种补偿参数值,我们设计了时钟芯片电路。时钟芯片采用Philips公司的PCF8583, PCF8583是内含I2C总线接口功能的具有极低功耗的多功能日历/时钟芯片,该芯片和单片机之间采用串行方式传输数据,另外该芯片提供256字节的RAM单元。 本文作者创新点: 在本系统的硬件电路的设计中,本着模块化的设计思想,设计了模拟信号采集处理电路,信号A/D转换电路,程序下载升级电路,显示和键盘电路,日历时钟电路,打印及输出电路,各个电路之间自成体系,同时又相互关联。程序下载电路利用单片机的ISP特性,使得系统开发完全摆脱了编程器,系统开发效率明显提高,系统开发成本降低。
- 基于Winodws CE的嵌入式网络监控系统的设计与实现(03-05)
- 基于MPEG-4的嵌入式多媒体监控系统中压缩/解压卡的设计与实现(10-15)
- 基于嵌入式Linux的远程监控系统的设计(11-25)
- 采用DSP的铁路道口图像监控系统设计(02-01)
- 基于DSP芯片TMS320DM642的嵌入式无线视频监控系统设计(01-11)
- 双DSP的多路视频监控系统设计(02-14)