汽车电气设计中如何缩短时间和降低成本
时间:12-03
来源:互联网
点击:
依靠实际的工程图纸作为贯穿整个汽车电气系统设计流程的思路是一种常见的传统做法。 但是图纸仅仅是从逻辑到物理设计展示平台所累计数据的一方面,总还有一些其他的有关的看法:从采购的角度(该设计中需要什么零件?);从工程的角度(当开关打开时,该马达会启动吗?)甚至是审核者的批示:这是当前的设计吗?被签署了吗?
汽车设计中成本和复杂性的提升以及相互影响是当前主要的挑战。越来越多的整车厂商和其供应商认识到一种支持数据一致性、方便从端到端获取的以数据为中心的流程可以确保他们系统地解决这些问题。
在以数据为中心的环境里,数据为王。数据流通过贯穿域和跨组织无缝地同步。每一种工具都使用相同的数据模型。车辆上的每一个零件在设计过程的不同阶段都会出现。产品计划员、设计员、采购代表以及流程审核员都从相同的数据源获取信息来满足其分析和工作需求。
核心是数据流
图1是一个以数据为中心的电气设计过程的概述。 最早阶段是平台定义,这里定义了目标车型的功能内容和选项及其变型,并建立可执行的规范。然后才会着手考虑机械的布置、电气设计、制造以及最终长期支持和服务。
物理接线的布局是把概念的系统连接性映射到具体的设计。当接线信息定义完成后,就可以开始设计每个单独的线束。单词“线束”这个词说起来简单,但是有可能包含了成千上万的设计以支持所有可能的顾客选择。当然,这些线束必须能够被生产并且线束供应商(另外一个数据使用者)将执行严格的需求分析以优化成本。同样的,售后服务部生成维修服务手册以支持所有可能的变化。所有的这些准则都需要依赖于一致的以整个数据为中心的流程中的信息。
跟踪零件的生命周期
早在逻辑系统设计的第一步,以数据为中心的流程就开始管理和跟踪出现的设计要素。
图2演示了逻辑设计步骤如何从一开始就遵循以数据为中心的原则。设计者建立图形符号,这也是最自然的方式来创建这种类型的设计。这些符号包含了电气行为的详细信息以保证正确地创建设计,同时也提供一种丰富的数据结构。从这点开始,这些信息将约束随后设计中的数据,并确保在这个过程中的所有步骤保持同步,并且设计更改可以被标记和处理。
设计浏览器的功能表明以数据为中心协议的实际意义,并强调特定领域数据环境的重要性。选中一个部件的文本实体会自动定位并高亮显示相关的图形元素,甚至这些元素不在当前显示的页面上。
设计者通过设计浏览器的符号选项卡可以访问存储的电气原理符号,但是这些符号不是单纯的线条图形。他们包含了库定义和电气分析模型,允许设计者检查电压降、电流流向等等。零件库的定义包含了客户和供应商的名称信息、连接器接口信息及其他的细节。 在设计流程的早期,不是每一个细节都可能被定义,但是在以数据为中心的环境中允许新的信息随时添加到已有的数据中并提供结构化的报表。 传入的数据都将被自动标记并可在流程的每一个阶段由设计者进行同步更新。
在图2的逻辑设计中定义了设备的互连但是故意不定义这些连接是如何用连接线和对接件实现的。下一步的接线设计将承担这样的任务。这代表了更细节的电气连接示意图,它再次从更广的数据流中获取数据,包括导线规格以及连接器内各个引脚的分配细节。值得注意的是,连接器可能携带着从几个不同子系统来的无关信号,而每一个信号又被几个不同的工程师管理。由此发生冲突的可能性很高,如果没有数据集成来允许工程师在整个流程进行协同工作,将很难控制在这种级别的复杂性。
在一个完整的平台上有数百个系统的逻辑和接线设计。以数据为中心所规定的原则,使每个设计都有自己的语境和与其他所有设计类似的环境,这更便于管理。以数据为中心的数据流系统,可以确保数据从一个设计阶段到下阶段的一致性,系统本身就确保了设计者无需再次输入相同的数据。此外,系统加载约束和反馈以强迫数据在零件定义和在同一个项目团队中工作的各人之间的一致性。
以数据为中心的设计流程支持和帮助企业组织有效的配置管理过程。在这个过程中数据的及时性和可访问性确保工程师知道在使用哪一设计版本、可用的规范和当前与设计数据库兼容匹配的原理图。
图表3是改编自美国空军技术支持中心的资料,标识了配置控制的4个主要方面:识别,状态记账,审计和变更控制
汽车设计中成本和复杂性的提升以及相互影响是当前主要的挑战。越来越多的整车厂商和其供应商认识到一种支持数据一致性、方便从端到端获取的以数据为中心的流程可以确保他们系统地解决这些问题。
在以数据为中心的环境里,数据为王。数据流通过贯穿域和跨组织无缝地同步。每一种工具都使用相同的数据模型。车辆上的每一个零件在设计过程的不同阶段都会出现。产品计划员、设计员、采购代表以及流程审核员都从相同的数据源获取信息来满足其分析和工作需求。
核心是数据流
图1是一个以数据为中心的电气设计过程的概述。 最早阶段是平台定义,这里定义了目标车型的功能内容和选项及其变型,并建立可执行的规范。然后才会着手考虑机械的布置、电气设计、制造以及最终长期支持和服务。
物理接线的布局是把概念的系统连接性映射到具体的设计。当接线信息定义完成后,就可以开始设计每个单独的线束。单词“线束”这个词说起来简单,但是有可能包含了成千上万的设计以支持所有可能的顾客选择。当然,这些线束必须能够被生产并且线束供应商(另外一个数据使用者)将执行严格的需求分析以优化成本。同样的,售后服务部生成维修服务手册以支持所有可能的变化。所有的这些准则都需要依赖于一致的以整个数据为中心的流程中的信息。
图1:在一个以数据为中心的环境中,每一个环节均产生并使用这些跨整个汽车设计、
生产以及售后服务流程中的共享数据
跟踪零件的生命周期
早在逻辑系统设计的第一步,以数据为中心的流程就开始管理和跟踪出现的设计要素。
图2演示了逻辑设计步骤如何从一开始就遵循以数据为中心的原则。设计者建立图形符号,这也是最自然的方式来创建这种类型的设计。这些符号包含了电气行为的详细信息以保证正确地创建设计,同时也提供一种丰富的数据结构。从这点开始,这些信息将约束随后设计中的数据,并确保在这个过程中的所有步骤保持同步,并且设计更改可以被标记和处理。
图 2: 在一个以为中心的设计套件中,选中在任何视图中的一个部分都会在相关视图中突出显示同样的部分
设计浏览器的功能表明以数据为中心协议的实际意义,并强调特定领域数据环境的重要性。选中一个部件的文本实体会自动定位并高亮显示相关的图形元素,甚至这些元素不在当前显示的页面上。
设计者通过设计浏览器的符号选项卡可以访问存储的电气原理符号,但是这些符号不是单纯的线条图形。他们包含了库定义和电气分析模型,允许设计者检查电压降、电流流向等等。零件库的定义包含了客户和供应商的名称信息、连接器接口信息及其他的细节。 在设计流程的早期,不是每一个细节都可能被定义,但是在以数据为中心的环境中允许新的信息随时添加到已有的数据中并提供结构化的报表。 传入的数据都将被自动标记并可在流程的每一个阶段由设计者进行同步更新。
在图2的逻辑设计中定义了设备的互连但是故意不定义这些连接是如何用连接线和对接件实现的。下一步的接线设计将承担这样的任务。这代表了更细节的电气连接示意图,它再次从更广的数据流中获取数据,包括导线规格以及连接器内各个引脚的分配细节。值得注意的是,连接器可能携带着从几个不同子系统来的无关信号,而每一个信号又被几个不同的工程师管理。由此发生冲突的可能性很高,如果没有数据集成来允许工程师在整个流程进行协同工作,将很难控制在这种级别的复杂性。
在一个完整的平台上有数百个系统的逻辑和接线设计。以数据为中心所规定的原则,使每个设计都有自己的语境和与其他所有设计类似的环境,这更便于管理。以数据为中心的数据流系统,可以确保数据从一个设计阶段到下阶段的一致性,系统本身就确保了设计者无需再次输入相同的数据。此外,系统加载约束和反馈以强迫数据在零件定义和在同一个项目团队中工作的各人之间的一致性。
以数据为中心的设计流程支持和帮助企业组织有效的配置管理过程。在这个过程中数据的及时性和可访问性确保工程师知道在使用哪一设计版本、可用的规范和当前与设计数据库兼容匹配的原理图。
图表3是改编自美国空军技术支持中心的资料,标识了配置控制的4个主要方面:识别,状态记账,审计和变更控制
- 采用数据连续性、设计自动化和V型系统来提升汽车电气设计(01-16)
- 基于虚拟仪器的特性测试参数数据库的设计(06-24)
- 嵌入式数据库在Java中的应用(03-03)
- SQLite嵌入式数据库系统的研究与实现(02-20)
- 嵌入式移动数据库系统中的数据查询(02-21)
- Linux EXT3下删除MySQL数据库的数据恢复(05-26)