微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 嵌入式设计 > 基于单片机的磁致伸缩位移传感器的应用

基于单片机的磁致伸缩位移传感器的应用

时间:12-26 来源:互联网 点击:

引言

  磁致伸缩位移传感器是根据磁致伸缩原理制造的高精度、长行程绝对位置测量的位移传感器。它采用非接触的测量方式,由于测量用的活动磁环和传感器自身并无直接接触,不至于被磨擦、磨损,因而其使用寿命长、环境适应能力强,可靠性高,安全性好,便于系统自动化工作,即使在恶劣的工业环境下(如容易受油溃、尘埃或其他的污染场合),也能正常工作。此外,它还能承受高温、高压和强振动,现已被广泛应用于机械位移的测量、控制中,但这种测量方法存在一些不足之处:①模拟信号抗干扰能力有限,不能远距离传输;②由于电路转换引入噪声,使其测量精度不高;③信号互换性差,还需要昂贵的A/D互换设备等。利用单片机及其外围电路进行较好的处理,实现了多点高精度测量,并通过RS-485串行通信实现远距离传输及接入工业监测网。另外,由于采用PIC低功耗单片机及其他低功耗芯片,优化电路结构,使系统功耗大大降低。

  1 磁致伸缩位移传感器简介

  1.1 传感器的结构

  磁致伸缩位移传感器由两部分组成:一部分是套有活动磁铁的测量杆;另一部分是位于测量杆上端的测量电路。磁致伸缩位移传感器的结构如图1所示。图1中,磁致伸缩位移传感器主要包括以下几部分:波导丝、保护管套、移动磁铁、电路板部分。测量管是整个传感器的核心传感部分,这一部分又包括:偏置磁铁、波导丝、保护管套、末端衰减阻尼装置、非接触磁环、转换器输出。

  1.2 传感器的工作原理

  磁致伸缩线被安装在不锈钢管内,钢管外侧可自由滑动,电子装置中的脉冲发生器产生电流脉冲(起始脉冲)并沿波导线传播,产生的磁场与活动磁环固有的磁场矢量叠加,形成螺旋磁场,产生瞬时扭力,使波导线扭动并产生张力脉冲(波导脉冲),这个脉冲以固定的速度沿波导传回,在线圈(转换器)两端产生感应脉冲(终止脉冲),通过测量起始脉冲与终止脉冲之间的时间差就可以精确地确定被测位移量。如图2所示。因为张力脉冲在波导管上的速度恒定,用测得的时间差乘以此速度,得出磁环的位置。这个过程是连续不断的,每当磁环运动时,新的位置就会被感测出来。

  1.3 信号特点及存在的问题

  目前,要想直接测量传感器起始、终止脉冲的时间间隔,得到准确的位置量,不易实现。现阶段采用的方法是,把两个脉冲信号的时间间隔转换为正比于磁环位置的PWM信号,然后以电流环的形式输出。在实际测量过程中,传感器内电流脉冲和感应脉冲会对输出信号产生一定的干扰;并且传感器本身的磁性材料感应的磁场与波导管内的电流之间不可避免地会产生电磁干扰(EMIElectroMagneticInterference),使得测量所得的输出信号有一定程度的畸变,如图3所示,即是将传感器的电流环输出信号转换为电压信号得到的波形。另外,如果需要在同一个系统中同时使用几个磁致伸缩位移传感器进行位移测量时,传感器相互之间也会有干扰。这些干扰信号的存在使得控制系统的动、静态性能不好,对精度高、响应频率快的控制系统而言,其影响程度是很明显的,会影响到系统的稳定,必须予以消除。设计一个基于单片机的传感器信号处理系统,将处理后得到的稳定的输出信号,以数字信号的形式直接通过远程通信传送给计算机进行控制,使得该类型磁致伸缩位移传感器输出信号稳定、精度高、传输距离远,与控制系统接口简单、互换性好、实用性强,使传感器更具智能化,整体性能得到极大的优化提高。

  2 在位移测量中的应用

  2.1 系统结构

  磁致伸缩位移传感器位移测量系统的硬件结构如图4所示。由于磁致伸缩位移传感器采用符合工业控制标准的4~20mA电流环输出的形式,故需要先把传感器的输出电流信号转换为电压信号,再采集出来进行A/D转换,然后输出给单片机进行信号处理以及通信处理,最后将理想的传感器信号以二进制方式传送给液晶示屏和PC机。传感器的电路是由敏感元件头、接收电路、信号整形电路、参数校正输入电路、计算机处理电路、显示电路、测量参数输出电路等组成。

  2.2 微处理电路

  单片机选用ATMEL公司基于CMOS工艺的8位微处理器AT89C4051,与MCS-51产品系列的指令完全兼容,片内含有4kb的FlashEPROM,它最突出的特点是芯片体

  积小,只有20个引脚,特别适合于小型化系统的设计。另外,AT89C4051价格便宜,性价比较高。

  2.3 信号整形电路

采用基于抽取被测信号特征量的滑动数字滤波算法。如图3所示,就是磁环在静止状态下,传感器输出的模拟信号

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top