一种通用的FPGA网络下载器硬件设计
层(分割成LVDS电平地和TTL电平地)和TTL信号层,如图7所示。
但在实际设计中,由于叠层的设计,不可能单独列出较多层,对于TTL和LVDS信号的地层也无需进行分割,因其会破坏地层的完整性,在确保完整地的情况下,可对其他地层TTL和LVDS信号分割。总之,在保证地层完整的情况下,使LVDS信号和TTL信号尽量分离,最好是在不同的层进行布线。在本PCB板的设计中,使用6层叠层结构:TOP-GND1-INNER-POWER-GND2-BOTTOM,其中TOP和BOTTOM层走LVDS信号,INNER和GND2走LVTTL信号,这样既保持了信号的分层,也保持了完整的信号回流路径。
LVDS信号频率可达600 MHz以上,所以差分线要求严格等长,差分对内最好不超过10 mil(0.254mm),若频率低于600 MHz,该约束值可适当放宽,但上限不能超过75 mil。不同LVDS对间的布线最大差值不超过200 mil。文中在Cadence16.3的约束设置中,具体设置如下。
差分阻抗的不匹配会产生反射,有10%的阻抗不匹配便会产生5%的反射,所以需根据不同的情况进行不同的匹配控制。LVDS信号的差分特性阻抗为100 Ω,对于LVDS信号发射端(TX),采用差分对各自串联精度为1%的50 Ω电阻进行匹配,这样既保持了信号传输的功率要求,又满足了阻抗控制的要求。
4 实测结果
下载器性能实测时,将LVDS接口接收和发送部分回环连接,可使用网络调试助手发送55 AA组成的1 032 Byte的数据包,测试下载器的功能。结果如图10所示,从图中可看到,下载器稳定的收发数据。
5 结束语
设计的网络下载器将FPGA在信号处理中的优势和ARM芯片在网络通信中的优势相结合,在PCB设计中对于LVDS接口的阻抗、高速线时序以及叠层进行了设计,较好地保证了系统硬件的可靠性,并在实际使用中达到了良好的效果。
- 基于LVDS的高速图像数据存储器的设计与实现(06-03)
- FPGA在LVDS高速互连中的应用(06-05)
- 基于FPGA的LVDS模块在DAC系统中的应用(06-05)
- DS90CF364 LVDS发送/接收器在RGB液晶屏应用(12-19)
- RS232 RS422 LVDS电平(12-14)
- 基于FPGA的数字核脉冲分析器硬件设计(07-29)